早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)如图1,在Rt△ABC中,∠ABC=90°,以点B为中心,把△ABC逆时针旋转90°,得到△A1BC1;再以点C为中心,把△ABC顺时针旋转90°,得到△A2B1C,连接C1B1,则C1B1与BC的位置关系为;(2)

题目详情
(1)如图1,在Rt△ABC中,∠ABC=90°,以点B为中心,把△ABC逆时针旋转90°,得到△A1BC1;再以点C为中心,把△ABC顺时针旋转90°,得到△A2B1C,连接C1B1,则C1B1与BC的位置关系为___;
(2)如图2,当△ABC是锐角三角形,∠ABC=α(α≠60°)时,将△ABC按照(1)中的方式旋转α,连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明;
(3)如图3,在图2的基础上,连接B1B,若C1B1=
2
5
BC,△C1BB1的面积为4,则△B1BC的面积为___.
作业搜
▼优质解答
答案和解析
(1)由旋转的性质可知,∠ACA2=90°,A1C1=A2C,∠BA1C1=∠A,
∴∠ACB+∠BCA2=90°,
∴∠BA1C1=∠BCA2
∴A1C1∥A2C,又A1C1=A2C,
∴四边形A1CA2C1是平行四边形,
∴C1B1∥BC,
故答案为:平行;
(2)C1B1∥BC;
证明:过C1作C1E∥B1C,交BC于E,则∠C1EB=∠B1CB,
由旋转的性质知,BC1=BC=B1C,∠C1BC=∠B1CB,作业搜
∴∠C1BC=∠C1EB,
∴C1B=C1E,
∴C1E=B1C,
∴四边形C1ECB1是平行四边形,
∴C1B1∥BC;
(3)∵C1B1=
2
5
BC,
C1B1
CB
=
2
5

由(2)得,C1B1∥BC,
∴△C1BB1的面积:△B1BC的面积=
C1B1
CB
=
2
5

∵△C1BB1的面积为4,
∴△B1BC的面积为10,
故答案为:10.