早教吧 育儿知识 作业答案 考试题库 百科 知识分享

试求sn=1+3/2^2+4/2^3+```+n/2^n-1+n+1/2^n

题目详情
试求sn=1+3/2^2+4/2^3+```+n/2^n-1+n+1/2^n
▼优质解答
答案和解析
Sn = 2/2 + 3/2^2 + 4/2^3 + …… + n/2^(n-1) + (n+1)/2^n
(1/2)Sn = 2/2^2+ 3/2^3 + …… + n/2^n + (n+1)/2^(n+1)
两式相减得
(1/2)Sn= 1 + [ 1/2^2+ 1/2^3 +……+ 1/2^n ] - (n+1)/2^(n+1)
= 1/2+ [ 1/2 + 1/2^2+ 1/2^3 +……+ 1/2^n ] - (n+1)/2^(n+1)
= 1/2 + [(2^n - 1)/2^n] - (n+1)/2^(n+1)
= [2^(n+1) + 2^n - n - 3]/[2^(n+1)]
= (3×2^n - n - 3)/[2^(n+1)]