早教吧作业答案频道 -->数学-->
如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.
题目详情
如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是___.
▼优质解答
答案和解析
如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,
∵DE是△ABC中位线,
∴DE∥BC,DE=
BC=10,
∵DN′∥EF,
∴四边形DEFN′是平行四边形,∵∠EFN′=90°,
∴四边形DEFN′是矩形,
∴EF=DN′,DE=FN′=10,
∵AB=AC,∠A=90°,
∴∠B=∠C=45°,
∴BN′=DN′=EF=FC=5,
∴
=
,
∴
=
,
∴DO′=
.
当∠MON=90°时,
∵△DOE∽△EFM,
∴
=
,
∵EM=
=13,
∴DO=
,
故答案为
或
.
∵DE是△ABC中位线,
∴DE∥BC,DE=
1 |
2 |
∵DN′∥EF,
∴四边形DEFN′是平行四边形,∵∠EFN′=90°,
∴四边形DEFN′是矩形,
∴EF=DN′,DE=FN′=10,
∵AB=AC,∠A=90°,
∴∠B=∠C=45°,
∴BN′=DN′=EF=FC=5,
∴
ED |
MN′ |
DO′ |
O′N′ |
∴
10 |
2 |
DO′ |
5-DO′ |
∴DO′=
25 |
6 |
当∠MON=90°时,
∵△DOE∽△EFM,
∴
DO |
EF |
ED |
EM |
∵EM=
EF2+MF2 |
∴DO=
50 |
13 |
故答案为
25 |
6 |
50 |
13 |
看了 如图,在Rt△ABC中,∠A...的网友还看了以下:
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1) 2020-06-22 …
n为非0自然数,试证n^13n定能被2730整除.2730=2*3*5*7*13,n^13-n=n 2020-07-22 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …