早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知抛物线f(x)=ax2+bx+14与直线y=x相切于点A(1,1).(Ⅰ)求f(x)的解析式;(Ⅱ)若对任意x∈[1,9],不等式f(x-t)≤x恒成立,求实数t的取值范围.

题目详情
已知抛物线f(x)=ax2+bx+
1
4
与直线y=x相切于点A(1,1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对任意x∈[1,9],不等式f(x-t)≤x恒成立,求实数t的取值范围.
▼优质解答
答案和解析
(Ⅰ)依题意,有
f(1)=a+b+
1
4
=1
f′(1)=2a+b=1
⇒a=
1
4
,b=
1
2

因此,f(x)的解析式为f(x)=(
x+1
2
)2;(6分)
(Ⅱ)由f(x-t)≤x(1≤x≤9)得(
x−t+1
2
)2≤x(1≤x≤9),解之得
(
x
−1)2≤t≤(
x
+1)2(1≤x≤9)
由此可得
t≤[(
x
+1)2]min=4且t≥[(
x
−1)2]max=4,
所以实数t的取值范围是{t|t=4}.(12分)