早教吧作业答案频道 -->数学-->
已知数列an,bn,满足a1=2,2an=1+2anan+1,bn=an-1,求证数列bn/1是等差数列
题目详情
已知数列an,bn,满足a1=2,2an=1+2anan+1,bn=an-1,求证数列bn/1是等
差数列
差数列
▼优质解答
答案和解析
做这样的题,应该先在草纸上把要证的结论写出来,化简一下,然后看看与已知条件有什么联系,
这样一来,你就知道从哪下手书写过程了.
{1/bn}是等差数列,就是 1/[a(n+1)-1]-1/(an-1) 为常数,设为 d ,
则 (an-1)-[a(n+1)-1]=d[a(n+1)-1]*(an-1) ,
展开得 an-a(n+1)=d*[a(n+1)*an-a(n+1)-an+1] ,
如果 d=1 ,那么式子就化为 2an=1+an*a(n+1) .
这不正是已知的等式么?(可惜你把已知条件打错了)
往后你该知道怎么写过程了吧?
算了,还是我帮你写出来吧.我好人做到底,记得加分哦.
由已知得 an-a(n+1)=an*a(n+1)-an-a(n+1)+1=(an-1)*[a(n+1)-1] ,
即 (an-1)-[a(n+1)-1]=(an-1)*[a(n+1)-1] ,
两边同除以 (an-1)*[a(n+1)-1] 得 1/[a(n+1)-1]-1/(an-1)=1 ,
即 1/b(n+1)-1/bn=1 ,
这说明数列{1/bn}是首项为 1/(a1-1)=1 ,公差为 1 的等差数列 .
(顺便可得 1/bn=n ,bn=1/n ,即 an-1=1/n ,所以 an=1+1/n=(n+1)/n).
这样一来,你就知道从哪下手书写过程了.
{1/bn}是等差数列,就是 1/[a(n+1)-1]-1/(an-1) 为常数,设为 d ,
则 (an-1)-[a(n+1)-1]=d[a(n+1)-1]*(an-1) ,
展开得 an-a(n+1)=d*[a(n+1)*an-a(n+1)-an+1] ,
如果 d=1 ,那么式子就化为 2an=1+an*a(n+1) .
这不正是已知的等式么?(可惜你把已知条件打错了)
往后你该知道怎么写过程了吧?
算了,还是我帮你写出来吧.我好人做到底,记得加分哦.
由已知得 an-a(n+1)=an*a(n+1)-an-a(n+1)+1=(an-1)*[a(n+1)-1] ,
即 (an-1)-[a(n+1)-1]=(an-1)*[a(n+1)-1] ,
两边同除以 (an-1)*[a(n+1)-1] 得 1/[a(n+1)-1]-1/(an-1)=1 ,
即 1/b(n+1)-1/bn=1 ,
这说明数列{1/bn}是首项为 1/(a1-1)=1 ,公差为 1 的等差数列 .
(顺便可得 1/bn=n ,bn=1/n ,即 an-1=1/n ,所以 an=1+1/n=(n+1)/n).
看了 已知数列an,bn,满足a1...的网友还看了以下:
急(n+1)an+12-nan2+an+1*an=0(n=1,2,)求an说明:an、an+1是角 2020-05-17 …
在数列an中,a1=3,na(n+1)-(n+1)an=2n(n+1)在数列{an}中,a1=3, 2020-05-21 …
高中数学数列问题.急急急急急急急急急急在数列{an}中,已知a1=1,当n∈N*时,an+1>an 2020-06-12 …
两种做法感觉都对,好纠结数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn(n∈N+). 2020-06-17 …
急数列{an}中,an+1=-an^2+2an,a1=t(t>0),且{an}是有界数列,求实数t 2020-06-23 …
数列{an}中,a1=6且an-an-1=an-1/n+n+1(n>=2)则这个数列的通项公式是要 2020-07-09 …
数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1 2020-07-22 …
已知数列an中,a1=1,an=(2n/n-1)an-1+n(n为大于等于2的正整数),且bn=a 2020-07-28 …
已知数列{An}的前n项和为Sn,Sn=2-(2\n+1)*An.(1)求证:数列{An\n}是等 2020-07-30 …
已知数列{an}中,a1=1/2点(n,2a(n+1)-an)在直线y=x上其中n=1,2,3,4, 2020-12-24 …