早教吧作业答案频道 -->其他-->
(2014•宜宾县模拟)如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)求证:△ODE是等边三角形.(2)线段BD、DE、EC三者有什么数量关系?写出你的判断过程.
题目详情
(2014•宜宾县模拟)如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.
(1)求证:△ODE是等边三角形.
(2)线段BD、DE、EC 三者有什么数量关系?写出你的判断过程.
(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)
(1)求证:△ODE是等边三角形.
(2)线段BD、DE、EC 三者有什么数量关系?写出你的判断过程.
(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)
▼优质解答
答案和解析
(1)证明:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,
∴△ODE是等边三角形;
(2)BD=DE=EC,
其理由是:∵OB平分∠ABC,且∠ABC=60°,
∴∠ABO=∠OBD=30°,
∵OD∥AB,
∴∠BOD=∠ABO=30°,
∴∠DBO=∠DOB,
∴DB=DO,
同理,EC=EO,
∵DE=OD=OE,
∴BD=DE=EC;
(3)①连接AO,并延长交BC于点F,求证△ABF是直角三角形;
②若等边△ABC的边长为1,求BC边上的高长是多少.
∴∠ABC=∠ACB=60°,
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,
∴△ODE是等边三角形;
(2)BD=DE=EC,
其理由是:∵OB平分∠ABC,且∠ABC=60°,
∴∠ABO=∠OBD=30°,
∵OD∥AB,
∴∠BOD=∠ABO=30°,
∴∠DBO=∠DOB,
∴DB=DO,
同理,EC=EO,
∵DE=OD=OE,
∴BD=DE=EC;
(3)①连接AO,并延长交BC于点F,求证△ABF是直角三角形;
②若等边△ABC的边长为1,求BC边上的高长是多少.
看了 (2014•宜宾县模拟)如图...的网友还看了以下:
已知:O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,判断∠COF和∠ 2020-06-15 …
已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB 2020-06-30 …
如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交A 2020-07-19 …
(2014•仪征市二模)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,D 2020-07-21 …
已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB 2020-07-31 …
如图,AC是⊙O的直径,AD与⊙O相切于点A,四边形ABCD是平行四边形,AB交⊙O于点E.(1) 2020-08-02 …
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ 2020-08-03 …
已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE与⊙O相切,交 2020-08-03 …
已知AB是圆O的直径.C是圆O上一点,弦CD平分角ACB(1)判断三角形ABD的形状并加以证明(2) 2020-11-03 …
如图,在平面直角坐标系xOy中,O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行 2020-11-19 …