早教吧作业答案频道 -->英语-->
求:Wislawaszymborska的英文诗诗中带有“我们何其幸运,无法确知自己生活在什么样的世界”的意思.一定要英文版的
题目详情
求:Wislawa szymborska的英文诗
诗中带有“我们何其幸运,无法确知自己生活在什么样的世界”的意思.
一定要英文版的
诗中带有“我们何其幸运,无法确知自己生活在什么样的世界”的意思.
一定要英文版的
▼优质解答
答案和解析
It's Most Fortunate
Wislawa Szymborska
It's most fortunate
that we do not know exactly
what kind of world we live on.
It would be necessary
to have existed very long,
decidedly longer
than the world.
If only for comparison
to get acquainted with other worlds.
One must soar out of the body
which cannot do anything
but limit
and create difficulties.
For the sake of research,
clarity of the picture,
and the final results,
one must rise above time,
in which everything drives and whirls.
From this perspective
you must once and for all get rid of
details and episodes.
Counting the days of the week
must seem
a meaningless activity,
throwing letters into a mail box
is a whim of foolish youth,
the plaque "Don't trample the grass" is
a senseless one.
Wislawa Szymborska
It's most fortunate
that we do not know exactly
what kind of world we live on.
It would be necessary
to have existed very long,
decidedly longer
than the world.
If only for comparison
to get acquainted with other worlds.
One must soar out of the body
which cannot do anything
but limit
and create difficulties.
For the sake of research,
clarity of the picture,
and the final results,
one must rise above time,
in which everything drives and whirls.
From this perspective
you must once and for all get rid of
details and episodes.
Counting the days of the week
must seem
a meaningless activity,
throwing letters into a mail box
is a whim of foolish youth,
the plaque "Don't trample the grass" is
a senseless one.
看了 求:Wislawaszymb...的网友还看了以下:
对于数列{Xn},若X2n-1趋向于a(k趋向于无穷大),X2k趋向a(k趋向无穷大),证明Xn趋 2020-05-13 …
k=1到无穷p^k=?p/1-p为什么求详解.k=1到无穷p^k=?p/1-p为什么求详解. 2020-06-14 …
又世上无难事只要肯登攀想到的400作文又世上无难事只要肯登攀的启示作文400字 2020-07-01 …
"一个幽灵在欧洲的上空徘徊……无产阶级子这场革命当中,失去的是锁链,得到的是全世界!全世界无产阶级 2020-07-13 …
若数列k+(k^2)+(k^3)+(k^4)+...的无限项之和是1/2,求k 2020-07-27 …
数学问题很急的我们知道正整数中无穷多个质数(素数),陶哲轩等证明了这样一个关于质数分布的奇妙定理: 2020-07-30 …
已知关于x、y的二元一次方程组3x+5y=63x+ky=10给出下列结论:①当k=5时,此方程组无 2020-07-31 …
数列求和收敛问题二则1.数列:k^(1/k)-1的无穷项之和S是否收敛?2.数列:1-k*sin( 2020-07-31 …
为什么二项式级数的收敛半径是1?我算出来的是(a-k)/(k+1)k趋于无穷大a是指数请指教k无 2020-07-31 …
对Cn(k)*q^(n-k)求和,其中q为小于1的常数,k为常数,n从k到正无穷一楼可以给出解题过程 2020-11-06 …