早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知圆O的圆心在y轴上,截直线l1:3x+4y+3=0所得弦长为8,且与直线l2:3x-4y+37=0相切,求圆O的方程.

题目详情
已知圆O的圆心在y轴上,截直线l1:3x+4y+3=0所得弦长为8,且与直线l2:3x-4y+37=0相切,求圆O的方程.
▼优质解答
答案和解析
设圆心M(0,b),半径R.圆M交L1于AB两点.AB=8,
做MN⊥L1,交L1于N点.则N平分AB. AN=4,
连AM,则AM=R. 
|MN|=
|4b+3|
32+42
=
|4b+3|
5

|AN|2+|MN|2=R2=16+
(4b+3)2
25

点M到直线L2距离d=R(圆M与直线L2相切),
d2=R2=
(37−4b)2
25

∴16+
(4b+3)2
25
(37−4b)2
25

16×25=(37-3b+4b+3)(37-4b-4b-3),
8b=34-16×
25
40
=24,
b=3,
R2=
(37−4×3)2
25
=25,
∴圆M的方程为:x2+(y-3)2=25.