早教吧作业答案频道 -->数学-->
(1)当k∈N*时,求证(1+√3)^k+(1-√3)^k是正整数(2)证明大于(1+√3)^2n的最小整数能被2^(n+1)整除(n∈N*)
题目详情
(1)当k∈N*时,求证(1+√3)^k+(1-√3)^k是正整数
(2)证明大于(1+√3)^2n的最小整数能被2^(n+1)整除(n∈N*)
(2)证明大于(1+√3)^2n的最小整数能被2^(n+1)整除(n∈N*)
▼优质解答
答案和解析
1.(a+b)^k是可以展开的(二项式展开,排列组合里面的内容),展开后加减相消就ok了.
2.我觉得第二题和第一题有很大的关系,(1-√3)^2n小于一大于0,(1+√3)^2n+(1-√3)^2n又是整数,估计就是那个所谓的大于(1+√3)^2n的最小整数,然后就看(1+√3)^2n+(1-√3)^2n化简后能否整除2^(n+1).没有第一题,第二题基本没戏,不大容易做出来的.
2.我觉得第二题和第一题有很大的关系,(1-√3)^2n小于一大于0,(1+√3)^2n+(1-√3)^2n又是整数,估计就是那个所谓的大于(1+√3)^2n的最小整数,然后就看(1+√3)^2n+(1-√3)^2n化简后能否整除2^(n+1).没有第一题,第二题基本没戏,不大容易做出来的.
看了 (1)当k∈N*时,求证(1...的网友还看了以下:
完全归纳法证明相等∑j=n/2(n+1),j=1到n,这个是提前给出的,可以不用证明在接下来的完全 2020-04-27 …
一个不等式证明已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n下面是我的证明, 2020-05-13 …
证明∑[(-1)^(n+1)]*1/n发散(证明-1的(n+1)次方乘上n分之1累加从1到正无穷的 2020-06-08 …
求教微积分的题题证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman证明不等式(1 2020-06-10 …
初等数论的几个问题(1)证明:当n是奇数时,3|2^n+1;当n是偶数时,3不能整除2^n+1(2 2020-06-12 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
证明:2[根号下(n+1)-1]小于1+1/根号2+1/根号3+------+1/根号n小于2根号 2020-07-30 …
已知数列{An}满足递推关系式:A(n+1)=1/2An^2-An+2,n>=1,n为整数.(1) 2020-08-01 …
1.已知f(n)=1+1/2+1/3+.+1/n,且g(n)=[1/f(n)-1][f(1)+f( 2020-08-01 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …