早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求教微积分的题题证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman证明不等式(1+1/n)n<e<(1+1/n)n+1.(n=1,2……)证明不等式1/(n+1)<In(1+1/n)<1/n.(n=1,2……)设{an}是一个

题目详情
求教微积分的题题
证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman
证明不等式(1+1/n)n<e<(1+1/n)n+1.(n=1,2……)
证明不等式1/(n+1)<In(1+1/n)<1/n.(n=1,2……)
设{an}是一个数列,若对任意n≥1,有∣an+2-an+1∣≤1/2∣an+1-an∣,证明{an}收敛.
证明:对数列{an}若存在常数c,使对任何n,有∣a2-a1∣+∣a3-a2∣+…+∣an+1-an∣<c,则an收敛.
▼优质解答
答案和解析
"证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman
证明不等式(1+1/n)n<e<(1+1/n)n+1.(n=1,2……)
证明不等式1/(n+1)<In(1+1/n)<1/n.(n=1,2……) ”
这个知道了an=(1+1/n)n+1严格单调减就可以简单证明,具体证明我就不写了一般证(1+1/n)n增的方法都可以移置
第四项|a_n+2|=|(a_n+2-a_n+1)+(a_n+1-a_n)+...+(a_2-a_1)+a_1|