早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,在四边形ABCD中,∠ABC=∠ADC=90°,BC=DC,∠BAD=120°(1)求证:AB=AD;(2)如图2,点M在边CD上(端点除外),点N在边BC上,∠MAN=∠BCD,连接MN①试判断线段BN、NM、MD之间的数量关系,并

题目详情
如图1,在四边形ABCD中,∠ABC=∠ADC=90°,BC=DC,∠BAD=120°
(1)求证:AB=AD;
(2)如图2,点M在边CD上(端点除外),点N在边BC上,∠MAN=∠BCD,连接MN
①试判断线段BN、NM、MD之间的数量关系,并给出证明;
②若CM=4,DM=1,则CN的长为
5
2
5
2
(请直接写出)




5
2
5
2
5
2
5522
5
2
5
2
5
2
5522
▼优质解答
答案和解析
(1)证明:连接AC,
在Rt△ABC和Rt△ADC中,
AC=AC
BC=DC

∴Rt△ABC≌Rt△ADC(HL),
∴AB=AD;

(2)①如图,把△ADM绕点A顺时针旋转120°得到△ABH,
∴AH=AM,BN=MD,∠BAH=∠DAM,
在四边形ABCD中,∠ABC=∠ADC=90°,∠BAD=120°,
∴∠BCD=360°-90°×2-120°=60°,
∵∠MAN=∠BCD,
∴∠NAH=∠BAH+∠BAN=∠DAM+∠BAN=∠BAD-∠MAN=120°-60°=60°,
∴∠NAH=∠NAM,
在△AMN和△AHN中,
AH=AM
∠NAH=∠NAM
AN=AN

∴△AMN≌△AHN(SAS),
∴NM=NH,
∵NH=BN+BH=BN+DM,
∴NM=BN+DM;

②连接AC,过点M作ME⊥AC于E,
∵Rt△ABC≌Rt△ADC,∠BCD=60°,
∴∠ACD=
1
2
×60°=30°,
∴ME=
1
2
CM=
1
2
×4=2,CE=CM•cos30°=4×
3
2
=2
3

AC=CD÷cos30°=(4+1)÷
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
AC=AC
BC=DC
AC=AC
BC=DC
AC=AC
BC=DC
AC=AC
BC=DC
AC=ACAC=ACAC=ACBC=DCBC=DCBC=DC,
∴Rt△ABC≌Rt△ADC(HL),
∴AB=AD;

(2)①如图,把△ADM绕点A顺时针旋转120°得到△ABH,
∴AH=AM,BN=MD,∠BAH=∠DAM,
在四边形ABCD中,∠ABC=∠ADC=90°,∠BAD=120°,
∴∠BCD=360°-90°×2-120°=60°,
∵∠MAN=∠BCD,
∴∠NAH=∠BAH+∠BAN=∠DAM+∠BAN=∠BAD-∠MAN=120°-60°=60°,
∴∠NAH=∠NAM,
在△AMN和△AHN中,
AH=AM
∠NAH=∠NAM
AN=AN

∴△AMN≌△AHN(SAS),
∴NM=NH,
∵NH=BN+BH=BN+DM,
∴NM=BN+DM;

②连接AC,过点M作ME⊥AC于E,
∵Rt△ABC≌Rt△ADC,∠BCD=60°,
∴∠ACD=
1
2
×60°=30°,
∴ME=
1
2
CM=
1
2
×4=2,CE=CM•cos30°=4×
3
2
=2
3

AC=CD÷cos30°=(4+1)÷
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
AH=AM
∠NAH=∠NAM
AN=AN
AH=AM
∠NAH=∠NAM
AN=AN
AH=AM
∠NAH=∠NAM
AN=AN
AH=AM
∠NAH=∠NAM
AN=AN
AH=AMAH=AMAH=AM∠NAH=∠NAM∠NAH=∠NAM∠NAH=∠NAMAN=ANAN=ANAN=AN,
∴△AMN≌△AHN(SAS),
∴NM=NH,
∵NH=BN+BH=BN+DM,
∴NM=BN+DM;

②连接AC,过点M作ME⊥AC于E,
∵Rt△ABC≌Rt△ADC,∠BCD=60°,
∴∠ACD=
1
2
×60°=30°,
∴ME=
1
2
CM=
1
2
×4=2,CE=CM•cos30°=4×
3
2
=2
3

AC=CD÷cos30°=(4+1)÷
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
1
2
111222×60°=30°,
∴ME=
1
2
CM=
1
2
×4=2,CE=CM•cos30°=4×
3
2
=2
3

AC=CD÷cos30°=(4+1)÷
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
1
2
111222CM=
1
2
×4=2,CE=CM•cos30°=4×
3
2
=2
3

AC=CD÷cos30°=(4+1)÷
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
1
2
111222×4=2,CE=CM•cos30°=4×
3
2
=2
3

AC=CD÷cos30°=(4+1)÷
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
3
2
3
3
3
3
33222=2
3

AC=CD÷cos30°=(4+1)÷
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
3
3
33,
AC=CD÷cos30°=(4+1)÷
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
作业帮用户 2016-11-30 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
作业帮用户 2016-11-30 举报
作业帮用户 2016-11-30 举报
作业帮用户作业帮用户 2016-11-302016-11-30 举报 举报
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
问题解析
问题解析
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
(1)连接AC,利用“HL”证明Rt△ABC和Rt△ADC全等,再根据全等三角形对应边相等证明即可;
(2)①把△ADM绕点A顺时针旋转120°得到△ABH,根据旋转的性质可得AH=AM,BN=DM,∠BAH=∠DAM,根据四边形的内角和定理求出∠BCD=60°,然后求出求出∠NAH=60°,从而得到∠NAH=∠NAM,再利用“边角边”证明△AMN和△AHN全等,根据全等三角形对应边相等可得NM=NH,然后整理即可得解;
②连接AC,过点M作ME⊥AC于E,然后求出ME、CE、AC、AD,再求出AE,然后求出∠BAN=∠EAM,然后根据两组角对应相等,两三角形相似求出△ABN和△AEM相似,利用相似三角形对应边成比例列式求出BN,再根据CN=BC-BN代入数据进行计算即可得解.
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
名师点评
名师点评
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
本题考点:
本题考点:
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
全等三角形的判定与性质;含30度角的直角三角形;勾股定理.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
考点点评:
考点点评:
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
本题考查了全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,(2)①难点在于利用旋转作出全等三角形,②难点在于作辅助线构造出相似三角形.
我是二维码 扫描下载二维码
我是二维码 扫描下载二维码
我是二维码 扫描下载二维码
©2020 作业帮 联系方式:service@zuoyebang.com  作业帮协议作业帮协议
var userCity = "\u4e50\u5c71", userProvince = "\u56db\u5ddd", zuowenSmall = "0";