早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在梯形ABCD中,AD∥BC,又ADBC=12,点M在边AB,且使AMMB=23,点N在边CD上,使线段MN把梯形分成面积比为3:1的两部分,求CNND的值.

题目详情
在梯形ABCD中,AD∥BC,又
AD
BC
=
1
2
,点M在边AB,且使
AM
MB
=
2
3
,点N在边CD上,使线段MN把梯形分成面积比为3:1的两部分,求
CN
ND
的值.
作业帮
在梯形ABCD中,AD∥BC,又
AD
BC
=
1
2
,点M在边AB,且使
AM
MB
=
2
3
,点N在边CD上,使线段MN把梯形分成面积比为3:1的两部分,求
CN
ND
的值.
作业帮
AD
BC
=
1
2
,点M在边AB,且使
AM
MB
=
2
3
,点N在边CD上,使线段MN把梯形分成面积比为3:1的两部分,求
CN
ND
的值.
作业帮
AD
BC
ADBCADADBCBC
1
2
,点M在边AB,且使
AM
MB
=
2
3
,点N在边CD上,使线段MN把梯形分成面积比为3:1的两部分,求
CN
ND
的值.
作业帮
1
2
121122
AM
MB
=
2
3
,点N在边CD上,使线段MN把梯形分成面积比为3:1的两部分,求
CN
ND
的值.
作业帮
AM
MB
AMMBAMAMMBMB
2
3
,点N在边CD上,使线段MN把梯形分成面积比为3:1的两部分,求
CN
ND
的值.
作业帮
2
3
232233
CN
ND
的值.
作业帮
CN
ND
CNNDCNCNNDND
作业帮
▼优质解答
答案和解析
如图,连结MC,MD,过M作梯形的高GH,分别交AD的延长线,BC于点G,H.
作业帮
设AD=x,则BC=2x,设GH=5h,则MH=3h,MG=2h
∴S梯形ABCD梯形ABCD=
1
2
(x+2x)×5h=7.5xh
S△AMD=
1
2
AD×MG=
1
2
x•2h=xh,
S△MBC=
1
2
BC×MH=
1
2
×2x•3h=3xh,
①当S四边形AMND:S四边形BCNM=1:3时,
∵S△AMD:S△MBC=xh:3xh=1:3,
∴S△MDN:S△MCN=1:3,
∵S△MDN和S△MCN高相等,
DN
CN
=
1
3
,即
CN
ND
=3;
②当S四边形AMND:S四边形BCNM=3:1时,
∴S四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
1
2
12111222(x+2x)×5h=7.5xh
S△AMD△AMD=
1
2
AD×MG=
1
2
x•2h=xh,
S△MBC=
1
2
BC×MH=
1
2
×2x•3h=3xh,
①当S四边形AMND:S四边形BCNM=1:3时,
∵S△AMD:S△MBC=xh:3xh=1:3,
∴S△MDN:S△MCN=1:3,
∵S△MDN和S△MCN高相等,
DN
CN
=
1
3
,即
CN
ND
=3;
②当S四边形AMND:S四边形BCNM=3:1时,
∴S四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
1
2
12111222AD×MG=
1
2
x•2h=xh,
S△MBC=
1
2
BC×MH=
1
2
×2x•3h=3xh,
①当S四边形AMND:S四边形BCNM=1:3时,
∵S△AMD:S△MBC=xh:3xh=1:3,
∴S△MDN:S△MCN=1:3,
∵S△MDN和S△MCN高相等,
DN
CN
=
1
3
,即
CN
ND
=3;
②当S四边形AMND:S四边形BCNM=3:1时,
∴S四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
1
2
12111222x•2h=xh,
S△MBC△MBC=
1
2
BC×MH=
1
2
×2x•3h=3xh,
①当S四边形AMND:S四边形BCNM=1:3时,
∵S△AMD:S△MBC=xh:3xh=1:3,
∴S△MDN:S△MCN=1:3,
∵S△MDN和S△MCN高相等,
DN
CN
=
1
3
,即
CN
ND
=3;
②当S四边形AMND:S四边形BCNM=3:1时,
∴S四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
1
2
12111222BC×MH=
1
2
×2x•3h=3xh,
①当S四边形AMND:S四边形BCNM=1:3时,
∵S△AMD:S△MBC=xh:3xh=1:3,
∴S△MDN:S△MCN=1:3,
∵S△MDN和S△MCN高相等,
DN
CN
=
1
3
,即
CN
ND
=3;
②当S四边形AMND:S四边形BCNM=3:1时,
∴S四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
1
2
12111222×2x•3h=3xh,
①当S四边形AMND四边形AMND:S四边形BCNM四边形BCNM=1:3时,
∵S△AMD△AMD:S△MBC△MBC=xh:3xh=1:3,
∴S△MDN△MDN:S△MCN△MCN=1:3,
∵S△MDN△MDN和S△MCN△MCN高相等,
DN
CN
=
1
3
,即
CN
ND
=3;
②当S四边形AMND:S四边形BCNM=3:1时,
∴S四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
DN
CN
DNCNDNDNDNCNCNCN=
1
3
,即
CN
ND
=3;
②当S四边形AMND:S四边形BCNM=3:1时,
∴S四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
1
3
13111333,即
CN
ND
=3;
②当S四边形AMND:S四边形BCNM=3:1时,
∴S四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
CN
ND
CNNDCNCNCNNDNDND=3;
②当S四边形AMND四边形AMND:S四边形BCNM四边形BCNM=3:1时,
∴S四边形AMND四边形AMND=7.5xh×
3
4
=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
3
4
34333444=
45xh
8

S四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
45xh
8
45xh845xh45xh45xh888,
S四边形BCNM四边形BCNM=7.5xh×
1
4
=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
1
4
14111444=
15xh
8
<S△MBC,因此不合题意.
综上所述
CN
ND
=3.
15xh
8
15xh815xh15xh15xh888△MBC△MBC,因此不合题意.
综上所述
CN
ND
=3.
CN
ND
CNNDCNCNCNNDNDND=3.