早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)计算:(log2125+log425+log85)(log52+log254+log1258)(2)已知x12+x−12=3,求x2+x-2和x-x-1的值.

题目详情
(1)计算:(log2125+log425+log85)(log52+log254+log1258)
(2)已知x
1
2
+x
1
2
=3,求x2+x-2和x-x-1的值.
▼优质解答
答案和解析
(1)原式=(log253+log2252+log235)•(log52+log5222+log5323)
=(3log25+log25+
1
3
log25)•(log52+log52+log52)
=
13
3
log25×3log52
=13;
(2)将x
1
2
+x
1
2
=3两边平方得:x+2+x-1=9,∴x+x-1=7,①
将①式再两边平方化简可得x2+x-2=47                   ②
将②式变形为x2-2+x-2=45,即(x1-x-12=45,∴x-x-1=±3
5

(只有一个值的扣2分)