早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•怀化)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的

题目详情
(2014•怀化)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.
(1)求y与x之间的函数关系式;
(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;
(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在△POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵AB=OB,∠ABO=90°,
∴△ABO是等腰直角三角形,
∴∠AOB=45°,
∵∠yOC=45°,
∴∠AOC=(90°-45°)+45°=90°,
∴AO⊥CO,
∵C′O′是CO平移得到,
∴AO⊥C′O′,
∴△OO′G是等腰直角三角形,
∵射线OC的速度是每秒2个单位长度,
∴OO′=2x,
∴其以OO′为底边的高为x,
∴y=
1
2
×(2x)•x=x2

(2)当x=3秒时,OO′=2×3=6,
1
2
×6=3,
∴点G的坐标为(3,3),
设抛物线解析式为y=ax2+bx,
9a+3b=3
64a+8b=0

解得
a=−
1
5
b=
8
5

∴抛物线的解析式为y=-
1
5
x2+
8
5
x;

(3)设点P到x轴的距离为h,
则S△POB=
1
2
×8h=8,
解得h=2,
当点P在x轴上方时,-
1
5
x2+
8
5
x=2,
整理得,x2-8x+10=0,
解得x1=4-
6
,x2=4+
作业帮用户 2017-10-07
问题解析
(1)判断出△ABO是等腰直角三角形,根据等腰直角三角形的性质可得∠AOB=45°,然后求出AO⊥CO,再根据平移的性质可得AO⊥C′O′,从而判断出△OO′G是等腰直角三角形,然后根据等腰直角三角形的性质列式整理即可得解;
(2)求出OO′,再根据等腰直角三角形的性质求出点G的坐标,然后设抛物线解析式为y=ax2+bx,再把点B、G的坐标代入,利用待定系数法求二次函数解析式解答;
(3)设点P到x轴的距离为h,利用三角形的面积公式求出h,再分点P在x轴上方和下方两种情况,利用抛物线解析式求解即可.
名师点评
本题考点:
二次函数综合题.
考点点评:
本题是二次函数综合题型,主要利用了等腰直角三角形的判定与性质,待定系数法求二次函数解析式,三角形的面积,二次函数图象上点的坐标特征,(3)要注意分情况讨论.
我是二维码 扫描下载二维码