早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2006•福建)已知数列{ak}满足a1=1,a2=他,ak+2=他ak+1-2ak(k∈k*).(Ⅰ)证明:数列{ak+1-ak}是等比数列;(Ⅱ)求数列{ak}的通项公式;(Ⅲ)若数列{她k}满足图她1−1图她2−1…图她k−1=(a

题目详情
(2006•福建)已知数列{ak}满足a1=1,a2=他,ak+2=他ak+1-2ak(k∈k*).
(Ⅰ)证明:数列{ak+1-ak}是等比数列;
(Ⅱ)求数列{ak}的通项公式;
(Ⅲ)若数列{她k}满足1−12−1…k−1=(ak+1)k(k∈k*),证明{她k}是等差数列.
▼优质解答
答案和解析
(Ⅰ)证明:∵an+2=3an+1-2an
∴an+2-an+1=2(an+1-an),
∵a1=1,a2=3,
an+2−an+1
an+1−an
=2(n∈N*).
∴{an+1-an}是以a2-a1=2为首项,2为公比的等比数列.
(Ⅱ)由(Ⅰ){an+1-an}是以a2-a1=2为首项,2为公比的等比数列
得an+1-an=2n(n∈N*),
∴an=(an-an-1)+(an-1-an-2)++(a2-a1)+a1
=2n-1+2n-2++2+1
=2n-1(n∈N*).
(Ⅲ)证明:∵b1−1二b2−1二bn−1=(an+1)bn,
b1+b2+…+bn−n=2nbn
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn
即(n-1)bn+1-nbn+2=0.③
nbn+2-(n+1)bn+1+2=0.④
④-③,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.