早教吧作业答案频道 -->数学-->
对于平面直角坐标系xOy中的点P(m,n),定义一种变换:作点P(m,n)关于y轴对称的点P′,再将P′向左平移k(k>0)个单位得到点Pk′,Pk′叫做对点P(m,n)的k阶“ℜ”变换.(1)求P(3
题目详情
对于平面直角坐标系xOy中的点P(m,n),定义一种变换:作点P(m,n)关于y轴对称的点P′,再将P′向左平移k(k>0)个单位得到点Pk′,Pk′叫做对点P(m,n)的k阶“ℜ”变换.
(1)求P(3,2)的3阶“ℜ”变换后P3′的坐标;
(2)若直线y=3x-3与x轴,y轴分别交于A,B两点,点A的2阶“ℜ”变换后得到点C,求过A,B,C三点的抛物线M的解析式;
(3)在(2)的条件下,抛物线M的对称轴与x轴交于D,若在抛物线M对称轴上存在一点E,使得以E,D,B为顶点的三角形是等腰三角形,求点E的坐标.
(1)求P(3,2)的3阶“ℜ”变换后P3′的坐标;
(2)若直线y=3x-3与x轴,y轴分别交于A,B两点,点A的2阶“ℜ”变换后得到点C,求过A,B,C三点的抛物线M的解析式;
(3)在(2)的条件下,抛物线M的对称轴与x轴交于D,若在抛物线M对称轴上存在一点E,使得以E,D,B为顶点的三角形是等腰三角形,求点E的坐标.
▼优质解答
答案和解析
(1)由3阶“ℜ”变换定义:P(3,2)关于y轴对称的点为P'的坐标为(-3,2),再将P'(-3,2)向左平移3个单位得P3'的坐标P3'(-6,2);
(2)当y=0,3x-3=0,解得x=1,则A(1,0);当x=0,y=3x-3=-3,则B(0,-3);
由2阶“ℜ”变换定义:A(1,0)关于y轴对称的点为A'的坐标为(-1,0),再将A'(-1,0)向左平移2个单位得P3'的坐标A3'(-3,0),则C(-3,0);
设过A,B,C三点的抛物线M的解析式y=a(x+3)(x-1),
将B(0,-3)代入得a•3•(-1)=-3,解得a=1,
所以抛物线M的解析式为y=(x+3)(x-1)=x2+2x-3;
(3)抛物线的对称轴为直线x=-
=-1,则D(-1,0),
而B(0,-3),
∴BD=
=
,
若DB=DE=
,如图,则E1(-1,
),E2(-1,-
),
若BD=BE,如图,则E3(-1,-6);
若ED=EB,如图,E4B=E4D,设E4(-1,t),
则t2=(-1)2+(t+3)2,解得t=-
,则E4(-1,-
),
综上所述,点E的坐标为(-1,
)、(-1,-
)、(-1,-6)、(-1,-
).
(2)当y=0,3x-3=0,解得x=1,则A(1,0);当x=0,y=3x-3=-3,则B(0,-3);
由2阶“ℜ”变换定义:A(1,0)关于y轴对称的点为A'的坐标为(-1,0),再将A'(-1,0)向左平移2个单位得P3'的坐标A3'(-3,0),则C(-3,0);
设过A,B,C三点的抛物线M的解析式y=a(x+3)(x-1),
将B(0,-3)代入得a•3•(-1)=-3,解得a=1,
所以抛物线M的解析式为y=(x+3)(x-1)=x2+2x-3;
(3)抛物线的对称轴为直线x=-
2 |
2 |
而B(0,-3),
∴BD=
12+32 |
10 |
若DB=DE=
10 |
10 |
10 |
若BD=BE,如图,则E3(-1,-6);
若ED=EB,如图,E4B=E4D,设E4(-1,t),
则t2=(-1)2+(t+3)2,解得t=-
5 |
3 |
5 |
3 |
综上所述,点E的坐标为(-1,
10 |
10 |
5 |
3 |
看了 对于平面直角坐标系xOy中的...的网友还看了以下:
初三反比例函数 若点D的坐标是(-8,0),求A、B两点坐标及k的值已知双曲线y=k/x与直线y= 2020-06-27 …
若在由正整数构成的无穷数列{a下标n}中,对任意的正整数n,都有a(下标)n≤a(下标)n+1,且 2020-07-12 …
排列组合最基本公式证明证明c上标3下标5为5x4x3/3x2x1证明这个公式是怎么来的另外c上标k 2020-07-29 …
一道概率统计问题,袋中有2^n个外形完全相同的球,其中C(n,k)个标有数字k(k=0,1,2.. 2020-07-30 …
数列{an}满足递推式:an=3an-1+3^n-1(n>=2),a1=5,则使得{an+k/3^ 2020-08-01 …
设无穷等差数列的前n项和为Sn1若首项A1=3/2,公差d=1,求满足S下标:k的平方=(S下标: 2020-08-02 …
1+2+3+4+5+.+n=0.5n^2+n1^2+2^2+3^2.+n^2=n(n+1)(2n+ 2020-08-03 …
某人向同一目标独立重复射击,每次射击命中目标的概率为12,则第k次命中目标恰在第n次(n≥k)射击时 2020-10-30 …
canada音标问题canada[ˈkænədə]加拿大音标里[ˈkænədə]的æ读“啊”还是“按 2020-11-11 …
反比例函数xy=k上p.q两点坐标分别为(m,k/m)(n,k/n)m小于n问p.q向x轴作垂线与x 2020-11-28 …