早教吧作业答案频道 -->数学-->
对于平面直角坐标系xOy中的点P(m,n),定义一种变换:作点P(m,n)关于y轴对称的点P′,再将P′向左平移k(k>0)个单位得到点Pk′,Pk′叫做对点P(m,n)的k阶“ℜ”变换.(1)求P(3
题目详情
对于平面直角坐标系xOy中的点P(m,n),定义一种变换:作点P(m,n)关于y轴对称的点P′,再将P′向左平移k(k>0)个单位得到点Pk′,Pk′叫做对点P(m,n)的k阶“ℜ”变换.
(1)求P(3,2)的3阶“ℜ”变换后P3′的坐标;
(2)若直线y=3x-3与x轴,y轴分别交于A,B两点,点A的2阶“ℜ”变换后得到点C,求过A,B,C三点的抛物线M的解析式;
(3)在(2)的条件下,抛物线M的对称轴与x轴交于D,若在抛物线M对称轴上存在一点E,使得以E,D,B为顶点的三角形是等腰三角形,求点E的坐标.
(1)求P(3,2)的3阶“ℜ”变换后P3′的坐标;
(2)若直线y=3x-3与x轴,y轴分别交于A,B两点,点A的2阶“ℜ”变换后得到点C,求过A,B,C三点的抛物线M的解析式;
(3)在(2)的条件下,抛物线M的对称轴与x轴交于D,若在抛物线M对称轴上存在一点E,使得以E,D,B为顶点的三角形是等腰三角形,求点E的坐标.
▼优质解答
答案和解析
(1)由3阶“ℜ”变换定义:P(3,2)关于y轴对称的点为P'的坐标为(-3,2),再将P'(-3,2)向左平移3个单位得P3'的坐标P3'(-6,2);
(2)当y=0,3x-3=0,解得x=1,则A(1,0);当x=0,y=3x-3=-3,则B(0,-3);
由2阶“ℜ”变换定义:A(1,0)关于y轴对称的点为A'的坐标为(-1,0),再将A'(-1,0)向左平移2个单位得P3'的坐标A3'(-3,0),则C(-3,0);
设过A,B,C三点的抛物线M的解析式y=a(x+3)(x-1),
将B(0,-3)代入得a•3•(-1)=-3,解得a=1,
所以抛物线M的解析式为y=(x+3)(x-1)=x2+2x-3;
(3)抛物线的对称轴为直线x=-
=-1,则D(-1,0),
而B(0,-3),
∴BD=
=
,
若DB=DE=
,如图,则E1(-1,
),E2(-1,-
),
若BD=BE,如图,则E3(-1,-6);
若ED=EB,如图,E4B=E4D,设E4(-1,t),
则t2=(-1)2+(t+3)2,解得t=-
,则E4(-1,-
),
综上所述,点E的坐标为(-1,
)、(-1,-
)、(-1,-6)、(-1,-
).
(2)当y=0,3x-3=0,解得x=1,则A(1,0);当x=0,y=3x-3=-3,则B(0,-3);
由2阶“ℜ”变换定义:A(1,0)关于y轴对称的点为A'的坐标为(-1,0),再将A'(-1,0)向左平移2个单位得P3'的坐标A3'(-3,0),则C(-3,0);
设过A,B,C三点的抛物线M的解析式y=a(x+3)(x-1),
将B(0,-3)代入得a•3•(-1)=-3,解得a=1,
所以抛物线M的解析式为y=(x+3)(x-1)=x2+2x-3;
(3)抛物线的对称轴为直线x=-
2 |
2 |
而B(0,-3),
∴BD=
12+32 |
10 |
若DB=DE=
10 |
10 |
10 |
若BD=BE,如图,则E3(-1,-6);
若ED=EB,如图,E4B=E4D,设E4(-1,t),
则t2=(-1)2+(t+3)2,解得t=-
5 |
3 |
5 |
3 |
综上所述,点E的坐标为(-1,
10 |
10 |
5 |
3 |
看了 对于平面直角坐标系xOy中的...的网友还看了以下:
问科学问题,1.光从空气射入水中,当入射角变化时则()A.反射角和折射角都发生变化,B,反射角和折 2020-04-26 …
平面与圆锥面相截,截口的几何特性随平面与圆锥轴线的交角而变化。交角是直角时,截口是圆;稍变一点,圆 2020-05-09 …
平面与圆锥面相截,截口的几何特性随平面与圆锥轴线的交角而变化。交角是直角时,截口是圆;稍变一点,圆 2020-05-09 …
黄赤交角变大,全球太阳高度角如何变化?遇到这样一个题当黄赤交角变大时,全球太阳高度角如何变化,昼夜 2020-05-12 …
一道几何数学题(1).一个三角形,通过减去一个角变成四边形是,所得到的新角和被剪去角的关系.如果减 2020-05-13 …
高等代数:麻烦看一下初等变换化二次型为标准型的方法是不是这样的每作一次初等行变换同行做一次初等列变 2020-06-07 …
放在水平地面上的物块,受到一个与水平方向成θ角斜向下方的力F的作用,物块在水平地面上始终静止.如图 2020-06-20 …
放在水平地面上的物块,受到一个与水平方向成α角斜向下方的力F的作用,物块在水平地面上做匀速直线运动 2020-06-20 …
复变函数中保角变换的变换函数一定是解析函数吗复变函数中变换函数解析的变换一定是保角变换,那么保角变 2020-06-20 …
平面与圆锥面相截,截口的几何特性随平面与圆锥轴线的交角而变化。交角是直角时,截口是圆;稍变一点,圆变 2020-11-03 …