早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图1,Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且DE⊥DF.(1)如果CA=CB,求证:AE2+BF2=EF2;(2)如图2,如果CA<CB,(1)中结论AE2+BF2=EF2还能成立吗?若成立,请

题目详情
已知:如图1,Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且DE⊥DF.

(1)如果CA=CB,求证:AE2+BF2=EF2
(2)如图2,如果CA2+BF2=EF2还能成立吗?若成立,请证明;若不成立,请说明理由.
▼优质解答
答案和解析
(1)证明:过点A作AM∥BC,交FD延长线于点M,
连接EM.
∵AM∥BC,
∴∠MAE=∠ACB=90°,∠MAD=∠B.
∵AD=BD,∠ADM=∠BDF,
∴△ADM≌△BDF.
∴AM=BF,MD=DF.
又DE⊥DF,∴EF=EM.
∴AE2+BF2=AE2+AM2=EM2=EF2.(3分)

(2)成立.
证明:延长FD至M,使DM=DF,连接AM、EM.
∵AD=BD,∠ADM=∠BDF,
∴△ADM≌△BDF.
∴AM=BF,∠MAD=∠B.
∴AM∥BC.∴∠MAE=∠ACB=90°.
又DE⊥DF,MD=FD,∴EF=EM.
∴AE2+BF2=AE2+AM2=EM2=EF2(7分)
(说明:本题提供的两种证法对(1)、(2)两问均适用)