早教吧作业答案频道 -->其他-->
正方形OABC的边长为2,把它放在如图所示的直角坐标系中,点M(t,0)是X轴上一个动点,连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与X轴交于点D,与Y轴交于点E,当三角形PDE
题目详情
正方形OABC的边长为2,把它放在如图所示的直角坐标系中,点M(t,0)是X轴上一个动点,连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与X轴交于点D,与Y轴交于点E,当三角形PDE为等腰直角三角形时,点P的坐标是______.
▼优质解答
答案和解析
如图,过点P作PF⊥BC交CB的延长线于点F,
∵四边形OABC与四边形BMNP都是正方形,
∴∠ABM+∠MBF=90°,
∠FBP+∠MBF=90°,
∴∠ABM=∠FBP,
在△ABM和△FBP中,
,
∴△ABM≌△FBP(AAS),
∴BF=AB,PF=AM,
∵正方形OABC的边长为2,点M(t,0),
∴BF=2,PF=t-2,
点P到x轴的距离为t-2+2=t,
∴点P的坐标为(4,t),
又∵当y=0时,2x+b=0,解得x=-
,
当x=0时,y=b,
∴点D(-
,0),E(0,b),
①DE是斜边时,
PD2=(
+4)2+t2,PE2=(b-t)2+42,DE2=(
)2+b2,
∵△PDE是等腰直角三角形,
∴PD2=PE2,且PD2+PE2=DE2,
即(
+4)2+t2=(b-t)2+42,且(
+4)2+t2+(b-t)2+42=(
)2+b2,
b2+4b+16+t2=b2-2bt+t2+16,且
b2+4b+16+t2+b2-2bt+t2+16=
b2+b2,
整理得,b=
(t+2)且t2-b(t-2)+16=0,
∴t2-
(t+2)(t-2)+16=0,
整理得,t2=16,
解得t1=4,t2=-4(舍去),
∴点P的坐标是(4,4);
②PD是斜边时,∵△PDE是等腰直角三角形,
∴PE⊥DE,且PE=DE,
过点P作PF⊥y轴于点F,
∵∠DEO+∠PEO=90°,∠DEO+∠EDO=90°,
∴∠PEO=∠EDO,
在△EDO和△PEF中,
∵四边形OABC与四边形BMNP都是正方形,
∴∠ABM+∠MBF=90°,
∠FBP+∠MBF=90°,
∴∠ABM=∠FBP,
在△ABM和△FBP中,
|
∴△ABM≌△FBP(AAS),
∴BF=AB,PF=AM,
∵正方形OABC的边长为2,点M(t,0),
∴BF=2,PF=t-2,
点P到x轴的距离为t-2+2=t,
∴点P的坐标为(4,t),
又∵当y=0时,2x+b=0,解得x=-
b |
2 |
当x=0时,y=b,
∴点D(-
b |
2 |
①DE是斜边时,
PD2=(
b |
2 |
b |
2 |
∵△PDE是等腰直角三角形,
∴PD2=PE2,且PD2+PE2=DE2,
即(
b |
2 |
b |
2 |
b |
2 |
1 |
4 |
1 |
4 |
1 |
4 |
整理得,b=
8 |
3 |
∴t2-
8 |
3 |
整理得,t2=16,
解得t1=4,t2=-4(舍去),
∴点P的坐标是(4,4);
②PD是斜边时,∵△PDE是等腰直角三角形,
∴PE⊥DE,且PE=DE,
过点P作PF⊥y轴于点F,
∵∠DEO+∠PEO=90°,∠DEO+∠EDO=90°,
∴∠PEO=∠EDO,
在△EDO和△PEF中,
作业帮用户
2017-10-24
|
看了 正方形OABC的边长为2,把...的网友还看了以下:
某合作学习小组对问题“一条定直线上的动点与直线外同侧两定点所连线段的夹角的最大值”进行了探索.(1 2020-04-07 …
如图,正六边形ABCDEF的边长为2,分别以AB,AE所在直线为x,y轴建立直角边坐标系,用斜二测 2020-04-13 …
初二上学期数学题、、全等形1如同所示,AE⊥AB,AD⊥AC,AB=AE,∠B=∠E,求证:(1) 2020-04-27 …
初二上学期全等形数学题1如同所示,AE⊥AB,AD⊥AC,AB=AE,∠B=∠E,求证:(1)BD 2020-04-27 …
(2012•乌鲁木齐)如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B落 2020-05-17 …
已知内接于圆的四边形的对角线互相垂直,求证圆心到一边的距离等于这条边所对边长的一半以四边形ABCD 2020-06-06 …
探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D= 2020-07-09 …
如图所示,在矩形ABCD中,AD=10,DC=8,点E为AB边上一点,△BCE沿EC所在直线翻折, 2020-07-15 …
高2数学直线与直线的位置关系?在立方体abcd-a‘b’c’d‘中,E,F分别是棱aa’.bb‘的 2020-07-21 …
数学二面角问题如果两个相交平面A,B,交线为CD,一条直线属于A,且垂直于CD,垂足为E,另一条直 2020-08-01 …