早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2007•泸州)如图,已知直线l:y=及抛物线C:y=ax2+bx+c(a≠0),且抛物线C图象上部分点的对应值如下表:x…-2-101234…y…-503430-5…(1)求抛物线C对应的函数解析式;(2

题目详情
(2007•泸州)如图,已知直线l:y=及抛物线C:y=ax2+bx+c(a≠0),且抛物线C图象上部分点的对应值如下表:
-2-1 2 3
 y-5 0 3 4 3 0-5
(1)求抛物线C对应的函数解析式;
(2)求直线l与抛物线C的交点A、B的坐标;
(3)若动点M在直线l上方的抛物线C上移动,求△ABM的边AB上的高h的最大值.

▼优质解答
答案和解析
(1)可任选三点坐标代入抛物线的解析式中进行求解即可.(可选其中与x轴的交点,用交点式二次函数通式设抛物线的解析式求解.)
(2)联立直线l和抛物线的解析式即可求出A、B的坐标.
(3)本题可通过三角形ABM的面积来求解.由于三角形AMB的面积无法直接求出,因此可将其分割成其他图形面积的和差来求解.过M作MN∥y轴交AB于N,那么三角形ABM的面积就分成了三角形AMN和BMN两部分,可以MN为底,以AB两点的横坐标的差的绝对值为高来求三角形ABM的面积,MN是抛物线的函数中与直线AB函数值的差,由此可得出关于三角形AMB的面积与M点横坐标的函数关系式.然后根据三角形ABM的面积的不同表示方法求出关于h和M点横坐标的函数关系式,根据函数的性质即可求出h的最大值.
【解析】
(1)∵抛物线C:y=ax2+bx+c(a≠0)过(-1,0),(0,3),(3,0);
∴可设二次函数的解析式为y=a(x+1)(x-3),
则有:3=a(0+1)(0-3),a=-1;
∴抛物线C对应的函数关系式为:y=-(x+1)(x-3)=-x2+2x+3.
(2)由
得:

∴A(-,-)和B(2,3).
(3)设点M(x,-x2+2x+3),其中-<x<3,过点M作y轴的平行线交直线AB于点N,则N(x,x).
且|MN|=-x2+2x+3-x=-x2+x+3
∴S△ABM=S△AMN+S△BMN=|MN|(x+)+|MN|(2-x)
=|MN|(+x+2-x)
=-x2+x+
由勾股定理得:
|AB|===
又∵S△ABM=|AB|•h,
וh=-x2+x+
∴h=(-x2+x+3),
故h=-(x-2+
∴当x=(-<3)时,h的最大值为