早教吧作业答案频道 -->数学-->
(2006•三明)如图①、②在▱ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E.(1)在图①中,求证:AF⊥BG,DF=CG;(2)在图②中,
题目详情
(2006•三明)如图①、②在▱ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E.
(1)在图①中,求证:AF⊥BG,DF=CG;
(2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长.
(1)在图①中,求证:AF⊥BG,DF=CG;
(2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长.
▼优质解答
答案和解析
(1)先设∠DAF=∠2,∠BAF=∠1,∠ABG=∠3,∠GBC=∠4.利用角平分线的性质可知,∠1=∠2=∠BAD,∠3=∠4=∠ABC,再利用平行四边形的邻角互补,可证垂直;再利用其对边平行,又可得∠1=∠F,∠3=∠G,等量代换,可得边相等,又有平行四边形的对边相等,可证;
(2)可利用和(1)相同的证法可得.延长BG、AD交于点H,利用角平分线的性质以及平行四边形的对边平行,可得DG=DH,AB=AH,即可求DH=DG=4,那么FG=2,又△FEG∽△AEB,可得相似比,能求出EG、BE的长,利用勾股定理,可求出AE,EF的长,那么AF就可求.
(1)证明:如图①,在平行四边形ABCD中,∠BAD+∠ABC=180°
∵AF、BG分别平分∠BAD和∠ABC,
∴∠1=∠2,∠3=∠4,
∴∠1+∠3=(∠BAD+∠ABC)=×180°=90°,
∴在△AEB中,∠AEB=90°,知AF⊥BG.
又有平行四边形ABCD中,AB∥CD,即AB∥FG,
可得∠1=∠F,而∠1=∠2,
∴∠2=∠F,
∴在△DAF中,DF=AD(4分)
同理可得,在△CBG中,CG=BC,
∵平行四边形ABCD中,AD=BC,
∴DF=CG;
(2)【解析】
如图②,平行四边形ABCD中,CD=AB=10,BC=AD=6,
由(1)和题意知,DF=AD=6,CF=CD-DF=4,
同理可得,CG=BC=6,
∴FG=CG-CF=2.
解法一:过点A作AH∥BG,交CD的延长线于H点(9分)
则四边形ABGH是平行四边形,且AH⊥AF
∴AH=BG=4,GH=AB=10,∴FH=FG+GH=12(10分)
在Rt△FAH中,;
解法二:过点C作CM∥AF,分别交AB、BG于点M、N(9分)
则四边形AMCF是平行四边形,CM=AF,且CM⊥BG于点N,
在等腰△BCM中,CN=NM,即CM=2CN
在等腰△CBG中,BN=NG=BG=2,
在Rt△BNC中,,
∴AF=CM=2CN=8;
解法三:平行四边形ABCD中,AB∥CD,题知AF⊥BG,
∴Rt△ABE∽Rt△FGE,得,
而GE=BG-BE,
∴=,
解得BE=,
∴GE=4-=(10分)
在Rt△AEB中,AE=,
在Rt△FEG中,EF=,
∴AF=AE+EF=8.
(2)可利用和(1)相同的证法可得.延长BG、AD交于点H,利用角平分线的性质以及平行四边形的对边平行,可得DG=DH,AB=AH,即可求DH=DG=4,那么FG=2,又△FEG∽△AEB,可得相似比,能求出EG、BE的长,利用勾股定理,可求出AE,EF的长,那么AF就可求.
(1)证明:如图①,在平行四边形ABCD中,∠BAD+∠ABC=180°
∵AF、BG分别平分∠BAD和∠ABC,
∴∠1=∠2,∠3=∠4,
∴∠1+∠3=(∠BAD+∠ABC)=×180°=90°,
∴在△AEB中,∠AEB=90°,知AF⊥BG.
又有平行四边形ABCD中,AB∥CD,即AB∥FG,
可得∠1=∠F,而∠1=∠2,
∴∠2=∠F,
∴在△DAF中,DF=AD(4分)
同理可得,在△CBG中,CG=BC,
∵平行四边形ABCD中,AD=BC,
∴DF=CG;
(2)【解析】
如图②,平行四边形ABCD中,CD=AB=10,BC=AD=6,
由(1)和题意知,DF=AD=6,CF=CD-DF=4,
同理可得,CG=BC=6,
∴FG=CG-CF=2.
解法一:过点A作AH∥BG,交CD的延长线于H点(9分)
则四边形ABGH是平行四边形,且AH⊥AF
∴AH=BG=4,GH=AB=10,∴FH=FG+GH=12(10分)
在Rt△FAH中,;
解法二:过点C作CM∥AF,分别交AB、BG于点M、N(9分)
则四边形AMCF是平行四边形,CM=AF,且CM⊥BG于点N,
在等腰△BCM中,CN=NM,即CM=2CN
在等腰△CBG中,BN=NG=BG=2,
在Rt△BNC中,,
∴AF=CM=2CN=8;
解法三:平行四边形ABCD中,AB∥CD,题知AF⊥BG,
∴Rt△ABE∽Rt△FGE,得,
而GE=BG-BE,
∴=,
解得BE=,
∴GE=4-=(10分)
在Rt△AEB中,AE=,
在Rt△FEG中,EF=,
∴AF=AE+EF=8.
看了 (2006•三明)如图①、②...的网友还看了以下:
根据所给图A~E,回答下列问题.(1)图A所示遗传信息传递的全过程成为,图B生理过程与图A中相对应 2020-05-02 …
根据所给图A~E回答问题。(1)图A所示全过程叫,图B生理过程与图一中相对应序号是,图C生理过程与 2020-05-02 …
(2014•嘉定区一模)图为部分经纬线图,30°N纬线与120°E经线相交于A地,A、B、C、D、 2020-05-14 …
如图,抛物线y=-1/2x²+5/2x-2与X轴相交于A,B,与y轴相交于点C,过点C作CD∥X轴 2020-06-06 …
如图是某公园部分景区的旅游线路示意图,其中B、C、D为风景点,A、E为路的交叉点,图中标注的数据为 2020-07-15 …
如图,已知△ABC,(1)根据要求作图,在边BC上求作一点D,使得点D到点A、B的距离相等,在边A 2020-07-21 …
正方形的6个面分别写着A、B、C、D、E、F,与B、C、E相对的分别是哪个面?F在上面图一上F,前 2020-07-31 …
(1)如图,矩形ABCD中,AB=5cm,BC=2cm,在AB边上取一点E,(点E与A,B不重合) 2020-08-01 …
(2006•宜昌)如图,小明站在C处看甲乙两楼楼顶上的点A和点E,C、E、A三点在同一条直线上,点B 2020-11-12 …
生成稳定化合物的相图在生成稳定化合物的相图中,三相线以下的相态为A+E[sup]A[/sup][su 2020-12-20 …