早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知AD是等边△ABC的高,F为AC边上的一个动点(不与A、C重合),BF与AD相交于点E,连接CE.(1)求证:BE=CE;(2)当△AEF是以为腰的等腰三角形时,求∠ECD的度数;(3)作∠FEG=120°,交

题目详情
已知AD是等边△ABC的高,F为AC边上的一个动点(不与A、C重合),BF与AD相交于点E,连接CE.
(1)求证:BE=CE;
(2)当△AEF是以___为腰的等腰三角形时,求∠ECD的度数;
(3)作∠FEG=120°,交AB于点G,猜想EF、EG的数量关系并说明理由.
作业帮
▼优质解答
答案和解析
作业帮(1)∵AD是等边△ABC的高,
∴AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
(2)∵AD是等边△ABC的高,
∴∠CAD=
1
2
∠BAC=30°,
∴△AEF为等腰三角形,
∴腰为AE或AF,AE=AF,
∴∠AEF=∠AFE=75°,
∵∠ACB=60°,
∴∠CBF=∠AFE-∠ACB=75°-60°=15°,
∵BE=CE,
∴∠ECD=∠CBF=15°,
故答案为AE或AF
(3)EF=EG,
理由:∵∠BAC=60°,∠FEG=120°,
∴∠BAC+∠FEG=180°,
∴∠AGE+∠AFE=180°,
∴∠AFE=BGE,
过点E作EN⊥AB,EM⊥AC,
∵AD是∠BAC的平分线,
∴EN=EM;
在△ENG和△EMF中,
∠EGN=∠EFM
∠ENG=∠EMF=90°
EN=EM

∴△ENG≌△EMF,
∴EG=EF