早教吧作业答案频道 -->其他-->
如图,等边△ABC和等边△BDE有公共顶点B,∠CBE=α(60°<α≤180°),连结CE,M、N、P、Q分别是AB、BD、CE、CB的中点,连结MN、NP、PM、PQ、MQ.(1)∠MQP的度数用α的代数式表示为;(2)
题目详情
如图,等边△ABC和等边△BDE有公共顶点B,∠CBE=α(60°<α≤180°),连结CE,M、N、P、Q分别是AB、BD、CE、CB的中点,连结MN、N P、PM、PQ、MQ.
(1)∠MQP的度数用α的代数式表示为______;
(2)求证:△MNB≌△MPQ;
(3)猜想△MNP的形状,并证明你的猜想.
(1)∠MQP的度数用α的代数式表示为______;
(2)求证:△MNB≌△MPQ;
(3)猜想△MNP的形状,并证明你的猜想.
▼优质解答
答案和解析
(1)∵△ABC和△BDE是等边三角形,
∴∠ABC=∠DBE=∠ACB=∠A=60°,AB=BC=AC,BD=DE=BE.
∵M、N、P、Q分别是AB、BD、CE、CB的中点,
∴PQ是△BCE的中位线,MQ是△ABC的中位线,BM=
AB,BN=
BD,
∴PQ∥BE,PQ=
BE,MQ∥AC,MQ=
AC,
∴MQ=MB,PQ=NB,∠MQB=∠ACB=60°,∠QMB=∠A=60°,∠PQB+∠CBE=180°.
∵∠CBE=α,
∴∠PQB=180°-α.
∴∠PQM=180°-α+60°=240°-α.
故答案为:240°-α;
(2)∵∠ABC+∠CBE+∠DBE+∠MBN=360°,
∴∠MBN=240°-α,
∴∠MBN=∠MQP.
在△MNB和△MPQ中,
,
∴△MNB≌△MPQ(SAS);
(3)△MNP是等边三角形.
理由:∵△MNB≌△MPQ,
∴MN=MP,∠NMB=∠QMP.
∴∠PMB+∠PNQ=∠PMB+∠BMN,
∴∠QMB=∠PMN=60°.
∴△MNP为等边三角形.
∴∠ABC=∠DBE=∠ACB=∠A=60°,AB=BC=AC,BD=DE=BE.
∵M、N、P、Q分别是AB、BD、CE、CB的中点,
∴PQ是△BCE的中位线,MQ是△ABC的中位线,BM=
1 |
2 |
1 |
2 |
∴PQ∥BE,PQ=
1 |
2 |
1 |
2 |
∴MQ=MB,PQ=NB,∠MQB=∠ACB=60°,∠QMB=∠A=60°,∠PQB+∠CBE=180°.
∵∠CBE=α,
∴∠PQB=180°-α.
∴∠PQM=180°-α+60°=240°-α.
故答案为:240°-α;
(2)∵∠ABC+∠CBE+∠DBE+∠MBN=360°,
∴∠MBN=240°-α,
∴∠MBN=∠MQP.
在△MNB和△MPQ中,
|
∴△MNB≌△MPQ(SAS);
(3)△MNP是等边三角形.
理由:∵△MNB≌△MPQ,
∴MN=MP,∠NMB=∠QMP.
∴∠PMB+∠PNQ=∠PMB+∠BMN,
∴∠QMB=∠PMN=60°.
∴△MNP为等边三角形.
看了 如图,等边△ABC和等边△B...的网友还看了以下:
已知数列{an}满足an+1=qan+2q-2(q为常数,|q|<1),若a3,a4,a5,a6∈ 2020-07-09 …
已知方程ax2+4x+b=0(a<0)的两实根为m,n,方程ax2+3x+b=0的两实根为p,q. 2020-07-12 …
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an 2020-07-30 …
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an 2020-07-30 …
等比数列{an}中,首项为a1,公比为q,则下列条件中,使{an}一定为递减数列的条件是()A.| 2020-07-30 …
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an 2020-07-30 …
已知幂函数y=x^(p/q)(p,q为整数,p/q为最简分数)的图象是双曲线,过(-1,1),(1 2020-08-01 …
有E、Q、T、X、Z五种前四周期元素,原子序数E<Q<T<X<Z。E、Q、T三种元素的基态原子具有相 2020-12-28 …
有E、Q、T、X、Z五种前四周期元素,原子序数E<Q<T<X<Z。E、Q、T三种元素的基态原子具有相 2020-12-28 …
若关于未知数x的方程x2+2px-q=0(p、q是实数)没有实数根,1求证:p+q<142写出若关于 2021-02-01 …