早教吧作业答案频道 -->数学-->
如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并
题目详情
如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.
(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;
(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.
(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;
(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.
▼优质解答
答案和解析
(1)∵在Rt△ABC中,∠BAC=90°,O为BC的中点,
∴OA=
BC=OB=OC,
即OA=OB=OC;
(2)△OMN是等腰直角三角形.理由如下:
连接AO
∵AC=AB,OC=OB
∴OA=OB,∠NAO=∠B=45°,
在△AON与△BOM中
∴△AON≌△BOM(SAS)
∴ON=OM,∠NOA=∠MOB
∴∠NOA+∠AOM=∠MOB+∠AOM
∴∠NOM=∠AOB=90°,
∴△OMN是等腰直角三角形.
∴OA=
1 |
2 |
即OA=OB=OC;
(2)△OMN是等腰直角三角形.理由如下:
连接AO
∵AC=AB,OC=OB
∴OA=OB,∠NAO=∠B=45°,
在△AON与△BOM中
|
∴△AON≌△BOM(SAS)
∴ON=OM,∠NOA=∠MOB
∴∠NOA+∠AOM=∠MOB+∠AOM
∴∠NOM=∠AOB=90°,
∴△OMN是等腰直角三角形.
看了 如图:在Rt△ABC中,AB...的网友还看了以下:
如图,△ABC中,AB=AC,O是BC的中点,以O为圆心的圆与AB相切于点D.求证:AC是○O的切 2020-05-20 …
AB是半圆O的直径,CO⊥AB交半圆O于点C,连结AC,⊙O’与OC,AB及半圆O相切于E,F,G 2020-06-06 …
AB是半圆O的直径,CO⊥AB交半圆O于点C,连结AC,⊙O’与OC,AB及半圆O相切于E,F,G 2020-06-06 …
关于圆的内接三角形简单问题一个圆O,其中有一个等腰三角形ABC,等腰三角形ABC内接于圆O,且两腰 2020-07-04 …
已知:如图1,等边△OAB的边长为3,另一等腰△OCA与△OAB有公共边OA,且OC=AC,∠C= 2020-07-17 …
已知:⊙O上两个定点A、B和两个动点C、D,AC与BD交于点E。(1)如图1,求证:;(2)如图2 2020-07-25 …
四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线Ac折叠四边形OABC是矩形,OA= 2020-07-26 …
O是平面上一定点,A、B、C是平面上上不共线的三个点.O是平面上一定点,A、B、C是平面上上不共线 2020-07-30 …
已知四面体ABCD的四个顶点A、B、C、D在同一个球O的球面上,球心O恰好在侧棱DA上,且满足AB 2020-07-31 …
(2014•丰南区二模)如图1,直径AC、BD将圆O四等分,动点P从圆心O出发,沿O→C→D→O路线 2020-12-20 …