早教吧作业答案频道 -->其他-->
(2013•黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2-25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B
题目详情
(2013•黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2-25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.
(1)求点C的坐标.
(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.
(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.
(1)求点C的坐标.
(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.
(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.
▼优质解答
答案和解析
(1)在Rt△AOC中,∠CAB+∠ACO=90°,在Rt△ABC中,∠CAB+∠CBA=90°,
∴∠ACO=∠CBA,
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴OC2=OA•OB,
∴OC=12,
∴C(0,12);
(2)在Rt△AOC和Rt△BOC中,
∵OA=9,OC=12,OB=16,
∴AC=15,BC=20,
∵AD平分∠CAB,
∵DE⊥AB,
∴∠ACD=∠AED=90°,
∵AD=AD,
∴△ACD≌△AED,
∴AE=AC=15,
∴OE=AE-OA=15-9=6,BE=10,
∵∠DBE=∠ABC,∠DEB=∠ACB=90°,
∴△BDE∽△BAC,
∴
=
,
∴DE=
,
∴D(6,
),
设直线AD的解析式是y=kx+b,
∵过A(-9,0)和D点,代入得:
,
k=
,b=
,
直线AD的解析式是:y=
x+
;
(3)存在点M,使得C、B、N、M为顶点的四边形是正方形,
理由是:①
以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个,
BQ=CQ=
BC=10,
∵∠BQF=∠BOC=90°,∠QBF=∠CBO,
∴△BQF∽△BOC,
∴
=
,
∵BQ=10,OB=16,BC=20,
∴BF=
,
∴OF=16-
=
,
即F(
,0),
∵OC=12,OB=16,Q为BC中点,
∴Q(8,6),
设直线QF的解析式是y=ax+c,
代入得:
∴∠ACO=∠CBA,
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴OC2=OA•OB,
∴OC=12,
∴C(0,12);
(2)在Rt△AOC和Rt△BOC中,
∵OA=9,OC=12,OB=16,
∴AC=15,BC=20,
∵AD平分∠CAB,
∵DE⊥AB,
∴∠ACD=∠AED=90°,
∵AD=AD,
∴△ACD≌△AED,
∴AE=AC=15,
∴OE=AE-OA=15-9=6,BE=10,
∵∠DBE=∠ABC,∠DEB=∠ACB=90°,
∴△BDE∽△BAC,
∴
DE |
AC |
BE |
BC |
∴DE=
15 |
2 |
∴D(6,
15 |
2 |
设直线AD的解析式是y=kx+b,
∵过A(-9,0)和D点,代入得:
|
k=
1 |
2 |
9 |
2 |
直线AD的解析式是:y=
1 |
2 |
9 |
2 |
(3)存在点M,使得C、B、N、M为顶点的四边形是正方形,
理由是:①
以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个,
BQ=CQ=
1 |
2 |
∵∠BQF=∠BOC=90°,∠QBF=∠CBO,
∴△BQF∽△BOC,
∴
BF |
BC |
BQ |
OB |
∵BQ=10,OB=16,BC=20,
∴BF=
25 |
2 |
∴OF=16-
25 |
2 |
7 |
2 |
即F(
7 |
2 |
∵OC=12,OB=16,Q为BC中点,
∴Q(8,6),
设直线QF的解析式是y=ax+c,
代入得:
作业帮用户
2017-10-02
|
看了 (2013•黑龙江)如图,在...的网友还看了以下:
如图,点B、E、C、F在一条直线上,AB=DE,角B=角DEF,BE=CF求证:(1)三角形ABC 2020-04-26 …
如图,在平面直角坐标系中,点A(2,4),B(5,0)动点p从点B出发沿BO向终点O运动如图所示, 2020-05-16 …
如图19,点B,C,D都在圆上,过点C作AC平行于BD交OB延长线于点A,连接CD,且角CDB=角 2020-05-17 …
纯铁的熔点是1535.c,但在高炉中,铁在1200.c左右就熔化了,这是因为——A.脉石降低了铁的 2020-06-19 …
在三角形ABC中角∠ABC=40°∠BAC=80°将三角形ABC绕点B按逆时针方向旋转一定角度后得 2020-06-27 …
如图,在三角形ABC中,角A70,角B90,点A关于BC的对称点是A‘,点B关于AC的对称点是B' 2020-07-17 …
已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1) 2020-07-26 …
如图,A、B、C是⊙O上的三点,且A是优弧上与点B、点C不同的一点,若△BOC是直角三角形,则△B 2020-07-31 …
初三数学.直角三角形OAB的斜边OA在x轴的正半轴上,直角顶点B在第一象限内,已知点A(10,0), 2020-11-07 …
在Rt三角形ABC中,AB=6cm,BC=8cm.角B=90度.M,N分别为AB,AC的中点,动点P 2020-11-20 …