早教吧作业答案频道 -->数学-->
求解抛物线题目已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x.(1)试在抛物线C上找一点P,使AP+PF的绝对值(F为C的焦点)有最小值;(2)试在抛物线C上
题目详情
求解抛物线题目
已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x. (1)试在抛物线C上找一点P,使AP+PF的绝对值(F为C的焦点)有最小值;
(2)试在抛物线C上找一点Q,试QF-QB的绝对值(F为C的焦点)有最大值.
已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x. (1)试在抛物线C上找一点P,使AP+PF的绝对值(F为C的焦点)有最小值;
(2)试在抛物线C上找一点Q,试QF-QB的绝对值(F为C的焦点)有最大值.
▼优质解答
答案和解析
(1)作AM垂直于准线于M,与抛物线交于点P,则AP+PF的绝对值(F为C的焦点)有最小值
P(x,2)
4x=4
x=1
P(1,2)
最小值为:3+1=4
(2)连结FB,与抛物线交于点Q,则QF-QB的绝对值(F为C的焦点)有最大值
FB方程为:y=7/3*(x-1)
与y2=4x联解
求得P的坐标
再求出QF-QB的绝对值(F为C的焦点)有最大值
P(x,2)
4x=4
x=1
P(1,2)
最小值为:3+1=4
(2)连结FB,与抛物线交于点Q,则QF-QB的绝对值(F为C的焦点)有最大值
FB方程为:y=7/3*(x-1)
与y2=4x联解
求得P的坐标
再求出QF-QB的绝对值(F为C的焦点)有最大值
看了 求解抛物线题目已知两定点A(...的网友还看了以下:
如图,抛物线y=ax的平方+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.( 2020-05-16 …
如图,抛物线y=ax 2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.(1 2020-05-16 …
如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(-1,0),B(5,-6), 2020-06-11 …
若抛物线Y=x的平方-2X+c于Y轴的交点坐标为(0,-3),则下列说法不正确的是()A.抛物线的 2020-06-12 …
已知抛物线C:y1=a(x-h)2-1,直线l:y2=kx-kh-1.(1)求证:直线l恒过抛物线 2020-06-27 …
已知:如图,抛物线y=-x2+bx+c的图象经过点A(1,0),B(0,5)两点,该抛物线与x轴的 2020-07-10 …
如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该 2020-08-01 …
如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y= 2020-08-03 …
如图,抛物线与x轴交于点A(—2,0),交y轴于点B(0,).直过点A与y轴交于点C,与抛物线的另一 2020-11-01 …
如图,已知:A(-2,-3),C(0,-1),B点与A点关于C点中心对称,抛物线y=ax2+bx+c 2020-11-04 …