早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过C,D两点,作边BC,AD的垂线,设两条垂线的交点为P.求证:∠PAD=∠PBC.

题目详情
如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过C,D两点,作边BC,AD的垂线,设两条垂线的交点为P.
求证:∠PAD=∠PBC.
▼优质解答
答案和解析
证明:如图:取AP,BP的中点分别为F,E;并连接DF,MF,EC,ME;
根据三角形的中位线定理得:MF=
1
2
BP=PE,ME=
1
2
AP=PF,
∴四边形MFPE为平行四边形
∴∠MFP=∠MEP,
∵PD⊥AD,PC⊥BC,
∴∠ADP=∠BCP=90°,
∴在Rt△APD与Rt△BPC中,
DF=AF=PF=
1
2
PA,CE=BE=PE=
1
2
BP,
∴DF=EM=PF,FM=PE=CE,
∵MC=MD,
∴△MDF≌△CME(SSS),
∴∠DFM=∠MEC,
∴∠DFP=∠CEP,
∴FA=FD,CE=BE,
∴∠DAF=∠FDA,∠ECB=∠CBE,
∴∠DFP=2∠DAP,∠CEP=2∠CBP,
∵∠DFP=∠CEP,
∴∠PAD=∠PBC.