早教吧作业答案频道 -->数学-->
已知:如图,在△ABC中,M是边AB的中点,D是边BC延长线上一点,DC=12BC,DN∥CM,交边AC于点N.(1)求证:MN∥BC;(2)当∠ACB为何值时,四边形BDNM是等腰梯形?并证明你的猜想.
题目详情
已知:如图,在△ABC中,M是边AB的中点,D是边BC延长线上一点,DC=
BC,DN∥CM,交边AC于点N.
(1)求证:MN∥BC;
(2)当∠ACB为何值时,四边形BDNM是等腰梯形?并证明你的猜想.
1 |
2 |
(1)求证:MN∥BC;
(2)当∠ACB为何值时,四边形BDNM是等腰梯形?并证明你的猜想.
▼优质解答
答案和解析
(1)证法一:取边BC的中点E,连接ME.
∵M是边AB的中点,
∴BM=AM,BE=EC,∴ME∥AC.
∴∠MEC=∠NCD.
∵CD=
BC,∴CD=CE.
∵DN∥CM,∴∠MCE=∠D.
∴△MEC≌△NCD.
∴CM=DN.
又∵CM∥DN,
∴四边形MCDN是平行四边形.
∴MN∥BC.
证法二:延长CD到F,使得DF=CD,连接AF.
∵CD=
BC,CD=DF,
∴BC=CF.
∵BM=AM,
∴MC∥AF.
∵MC∥DN,
∴ND∥AF.
又∵CD=DF,
∴CN=AN.
∴MN∥BC.
(2)答:当∠ACB=90°时,四边形BDNM是等腰梯形.
证明:∵MN∥BD,BM与DN不平行,
∴四边形BDNM是梯形,
∵∠ACB=90°
M是边AB的中点,
∴BM=AM,
∵CM是Rt△ABC的中线,
∴CM=BM=AM,
∵CM=DN,
∴BM=DN,
∴四边形BDNM是等腰梯形.
∵M是边AB的中点,
∴BM=AM,BE=EC,∴ME∥AC.
∴∠MEC=∠NCD.
∵CD=
1 |
2 |
∵DN∥CM,∴∠MCE=∠D.
∴△MEC≌△NCD.
∴CM=DN.
又∵CM∥DN,
∴四边形MCDN是平行四边形.
∴MN∥BC.
证法二:延长CD到F,使得DF=CD,连接AF.
∵CD=
1 |
2 |
∴BC=CF.
∵BM=AM,
∴MC∥AF.
∵MC∥DN,
∴ND∥AF.
又∵CD=DF,
∴CN=AN.
∴MN∥BC.
(2)答:当∠ACB=90°时,四边形BDNM是等腰梯形.
证明:∵MN∥BD,BM与DN不平行,
∴四边形BDNM是梯形,
∵∠ACB=90°
M是边AB的中点,
∴BM=AM,
∵CM是Rt△ABC的中线,
∴CM=BM=AM,
∵CM=DN,
∴BM=DN,
∴四边形BDNM是等腰梯形.
看了 已知:如图,在△ABC中,M...的网友还看了以下:
问几个c问题1,设x=2.5,y=4.7,a=7,则x+a%3*(int)(x+y)%2/4=2, 2020-04-08 …
分解因式a(a-b-c)+b(c-a+b)+c(b-a+c)的结果是()A.(b+c-a)2B.( 2020-04-08 …
若非空集合M⊆N={a,b,c,d},则M的个数为8个{a},{b},{c},{d},{a,b}, 2020-05-15 …
已知平面向量a,b,c互不平行,则下列结论正确的是:A.c-a*(b*c)/(a*b)=0(a*b 2020-05-17 …
4.化简(m-c)/[(m-a)(m-b)]+(b-c)/[(a-b)(m-b)]+(b-c)/[ 2020-05-21 …
1.m-mmX=3+1,y=9+(1/3),试求y与x的函数关系式2.已知:a+x方=2005,b 2020-06-03 …
已知有理数a.b.c.在数轴上的位置如图所示,|a|=|b|1.a+b与a/b的值;2.c-a/c 2020-06-03 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
各种运算律谁知道?a+b=b+a()a+b+c=a+(b+c)()a*b=b*a()a*b*c=a 2020-06-19 …
1.已知a,b,c∈R.a+b+c=1a²+b²+c²=1/2求证c≥02(1)已知a,c是正实数 2020-07-14 …