已知椭圆C1:+=1(a1>b1>0)与双曲线C2:﹣=1(a2>0,b2>0)有相同的焦点F1,F2,点P是两曲线的一个公共点,a1,a2又分别是两曲线的离心率,若PF1⊥PF2,则4e12+e22的最小值为()A.
已知椭圆C1: +=1(a1>b1>0)与双曲线C2:﹣=1(a2>0,b2>0)有相同的焦点F1,F2,点P是两曲线的一个公共点,a1,a2又分别是两曲线的离心率,若PF1⊥PF2,则4e12+e22的最小值为( )
A. B.4 C. D.9
C【考点】双曲线的简单性质;椭圆的简单性质.
【专题】圆锥曲线中的最值与范围问题.
【分析】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推志出,由此能求出4e12+e22的最小值.
【解答】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,
令P在双曲线的右支上,
由双曲线的定义|PF1|﹣|PF2|=2a2,①
由椭圆定义|PF1|+|PF2|=2a1,②
又∵PF1⊥PF2,
∴=4c2,③
①2+②2,得=,④
将④代入③,得,
∴4e12+==+
=
≥=.
故选:C.
【点评】本题考查4e12+e22的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用.
椭圆x^2/a^2+y^2/b^2=1(a>b>0)离心率是1/2,且椭圆上的店到焦点的距离最小是 2020-05-15 …
已知椭圆C:x^2/a^2+y^2/b^2(a>b>0)的离心率为(√6)/3,短轴一个端点到右焦 2020-05-16 …
求双曲线的离心率的选择题求解.已知双曲线C1:X^2/a^2-y^2/b^2=10,b>0>于抛物 2020-06-03 …
立体几何球A,B,C是半径为1的球面上三点,B,C两点间的球面距离是π/3,点A与B,C两点间的球 2020-06-14 …
1,2,3,三人同时从a地向b地跑,当1到B时,2离B地还有20米,3离还有B地40米,当2到B时 2020-07-12 …
已知椭圆C1:已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的长轴为根号2,离心率 2020-07-30 …
三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线称为 2020-07-30 …
已知椭圆C:x^2/a^2+y^2/b^2=(a>b>0)的离心率为根号6/3,且经过点(3/2, 2020-08-01 …
如图椭圆x2/a2+y2/b2=1(a>b>0)与过A(2,0),B(0,1)的直线有且只有一个公 2020-08-01 …
A、B、C是半径为1的球面上三点,B、C间的球面距离为π3,点A与B、C两点间的球面距离均为π2, 2020-08-02 …