早教吧作业答案频道 -->数学-->
求抛物线y=1+((x)^(2))/4(0≤x≤2)绕x轴旋转所得的旋转体的表面积
题目详情
求抛物线y=1+((x)^(2))/4(0≤x≤2)绕x轴旋转所得的旋转体的表面积
▼优质解答
答案和解析
图形绕x轴旋转所得的旋转体的表面积
=∫[2π(1+x²/4)√(1+y'²)]dx (y'=(1+x²/4)'=x/2)
=2π∫(1+x²/4)^(3/2)dx
=2π∫(sec³t*2sec²t)dt (令x/2=tant)
=4π∫[cost/(cost)^6]dt
=4π∫d(sint)/(1-sin²t)³
=4π∫(1/16)[2/(1-sint)³+3/(1-sint)²+3/(1-sint)+2/(1+sint)³+3/(1+sint)²+3/(1+sint)]d(sint)
=(π/4)[1/(1-sint)²+3/(1-sint)-3ln(1-sint)-1/(1+sint)²-3/(1+sint)+3ln(1+sint)]│
=(π/4)[4sint/(cost)^4+6sint/cos²t+3ln((1+sint)/(1-sint))]│
=(π/4)[4/(1/√2)³+6/(1/√2)+3ln((1+1/√2)/(1-1/√2))]
=(π/4)[8√2+6√2+6ln(√2+1)]
=(π/2)[7√2+3ln(√2+1)].
=∫[2π(1+x²/4)√(1+y'²)]dx (y'=(1+x²/4)'=x/2)
=2π∫(1+x²/4)^(3/2)dx
=2π∫(sec³t*2sec²t)dt (令x/2=tant)
=4π∫[cost/(cost)^6]dt
=4π∫d(sint)/(1-sin²t)³
=4π∫(1/16)[2/(1-sint)³+3/(1-sint)²+3/(1-sint)+2/(1+sint)³+3/(1+sint)²+3/(1+sint)]d(sint)
=(π/4)[1/(1-sint)²+3/(1-sint)-3ln(1-sint)-1/(1+sint)²-3/(1+sint)+3ln(1+sint)]│
=(π/4)[4sint/(cost)^4+6sint/cos²t+3ln((1+sint)/(1-sint))]│
=(π/4)[4/(1/√2)³+6/(1/√2)+3ln((1+1/√2)/(1-1/√2))]
=(π/4)[8√2+6√2+6ln(√2+1)]
=(π/2)[7√2+3ln(√2+1)].
看了 求抛物线y=1+((x)^(...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
1.已知函数f(x)满足f(x)+2f(1/x)=2x-1,求f(x)2.设f(x)是定义在R上的 2020-05-23 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …