早教吧作业答案频道 -->数学-->
已知E(2,2)是抛物线C:y方=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于E点),直线EA,EB分别交直线x=-2与点M,N.求抛物线方程及焦点坐标.2.已知O为原点求证角MON为定植.
题目详情
已知E(2,2)是抛物线C:y方=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B
两点(不同于E点),直线EA,EB分别交直线x=-2与点M,N.求抛物线方程及焦点坐标.2.已知O为原点求证角MON为定植.
两点(不同于E点),直线EA,EB分别交直线x=-2与点M,N.求抛物线方程及焦点坐标.2.已知O为原点求证角MON为定植.
▼优质解答
答案和解析
(1)
E(2,2)在C上:4 = 2p*2,p =1,y² = 2x,焦点F(1/2,0)
(2)
设A(a²/2,a),B(b²/2,b)
AB方程:(y - b)/(a - b) = (x - b²/2)/(a²/2 - b²/2)
过(2,0),简化得ab = -4 (i)
EA方程:(y - 2)/(a - 2) = (x - 2)/(a²/2 - a)
令x = -2,y = 2(a - 2)/(a + 2)
M(-2,2(a - 2)/(a + 2))
类似地,N(-2,2(b - 2)/(b + 2))
OM斜率m = -(a - 2)/(a + 2)
ON斜率n = -(b - 2)/(b + 2)
mn = (ab - 2a - 2b + 4)/(ab + 2a + 2b + 4) = (-4 - 2a - 2b + 4)/(-4 + 2a + 2b + 4) = -1
角MON为直角
E(2,2)在C上:4 = 2p*2,p =1,y² = 2x,焦点F(1/2,0)
(2)
设A(a²/2,a),B(b²/2,b)
AB方程:(y - b)/(a - b) = (x - b²/2)/(a²/2 - b²/2)
过(2,0),简化得ab = -4 (i)
EA方程:(y - 2)/(a - 2) = (x - 2)/(a²/2 - a)
令x = -2,y = 2(a - 2)/(a + 2)
M(-2,2(a - 2)/(a + 2))
类似地,N(-2,2(b - 2)/(b + 2))
OM斜率m = -(a - 2)/(a + 2)
ON斜率n = -(b - 2)/(b + 2)
mn = (ab - 2a - 2b + 4)/(ab + 2a + 2b + 4) = (-4 - 2a - 2b + 4)/(-4 + 2a + 2b + 4) = -1
角MON为直角
看了 已知E(2,2)是抛物线C:...的网友还看了以下:
已知集合P={y|y=x平方-1,x属于R},Q={y|y=-2x平方+2,x属于R},求P并Q. 2020-04-27 …
已知等比数列an中前n项之和为Sn=p3^n-3/2(p属于R)求p值;求an的通项公式 2020-05-13 …
已知:inta[]={1,2,3,4,5,6,7,8,9,10,11,12},*p=a则值为3的表 2020-05-13 …
已知幂函数f(x)=x^(1/2p+p+3/2)(p属于z)在(0,正无穷大)上是增函数且在定义域 2020-05-13 …
已知函数f(X)=x^(-1/2p^2+p+3/2)(p属于Z)在(0,+无穷)上是增函数,且在其 2020-05-13 …
已知p^2-p-1=0,1-q-q^2=0,且pq不等于1.则pq+1/q1-q-q^2=0因为q 2020-06-07 …
已知命题P:任意的X属于R,(m+1)(x^2+1)小于等于0;命题q:任意的x属于R,X^2+m 2020-07-22 …
已知定点A(-2,0),动点B是圆F(X-2)^2+Y^2=64(F为圆心)上一点,线段AB的垂直 2020-07-26 …
已知命题p:"对任意x属于[1,2],x^2-a>=0",命题q:"存在x0属于R,x0^2+2a 2020-07-29 …
已知(y+z-x)/(x+y+z)=(z+x-y)/(y+z-x)=(x+y-z)/(z+x-y)= 2020-11-01 …