早教吧作业答案频道 -->数学-->
如图1,顶点为B(r,t+6),的抛物线y=ax2+bx+c过点A(0,6),t≠0,连接AB,P是线段AB上的动点,过点P作x轴的垂线(垂足为D),交抛物线y=ax2+bx+c于点C,设点P的横坐标为m,AC、AB、BC围成的图
题目详情
如图1,顶点为B(r,t+6),的抛物线y=ax2+bx+c过点A(0,6),t≠0,连接AB,P是线段AB上的动点,过点P作x轴的垂线(垂足为D),交抛物线y=ax2+bx+c于点C,设点P的横坐标为m,AC、AB、BC围成的图形面积为S,点P,C之间的距离为d,s是m的二次函数,图象如图2所示,Q为顶点,O,E为其与m轴的两个交点.
(1)求s与m的函数关系;
(2)求r的值;
(3)求d与m函数关系式;
(4)求抛物线y=ax2+bx+c的表达式.
(1)求s与m的函数关系;
(2)求r的值;
(3)求d与m函数关系式;
(4)求抛物线y=ax2+bx+c的表达式.
▼优质解答
答案和解析
(1)由图2可知,抛物线的顶点Q(2,4),且过点E(4,0),
设S=a(m-2)2+4,
将点E(4,0)代入得,0=a(4-2)2+4,
解得:a=-1,
故可得:S=-(m-2)2+4.
(2)由图1可知,当点P与A或B重合时,s=0,由图2知,此时点P的横坐标为0或4,
所以点B(4,t+6),从而r=4.
(3)过点A作直线PC,直线x=4的垂线,垂足分别为M,N,且AN=4,
∵S=
PC•AM+
PC•MN=
AN•PC=2PC=2d,
∴d=
s=-
(m-2)2+2=-
m2+2m.
(4)抛物线y=ax2+bx+c的顶点B(4,t+6),且过A(0,6),
可设抛物线为y=a(x-4)2+t+6,
将A(0,6)代入得:6=16a+t+6,
解得:a=−
t,
所以y=−
t(x-4)2+t+6,
因为直线AB过A(0,6),可设其解析式为y=kx+6,
将B(4,t+6)代入得,t+6=4k+6,解得,k=
t,所以直线AB:y=
tx+6,
因而点P(m,
tm+6 ),点C( m,−
t(m-4)2+t+6 ),
PC=d=
tm+6-[−
t(m-4)2+t+6]=
tm2-
tm,
因为当m=2时,d=2,所以
t×22-
t×2=2,即解得t=-8,
因而所求抛物线为y=
(x-4)2-2.
设S=a(m-2)2+4,
将点E(4,0)代入得,0=a(4-2)2+4,
解得:a=-1,
故可得:S=-(m-2)2+4.
(2)由图1可知,当点P与A或B重合时,s=0,由图2知,此时点P的横坐标为0或4,
所以点B(4,t+6),从而r=4.
(3)过点A作直线PC,直线x=4的垂线,垂足分别为M,N,且AN=4,
∵S=
1 |
2 |
1 |
2 |
1 |
2 |
∴d=
1 |
2 |
1 |
2 |
1 |
2 |
(4)抛物线y=ax2+bx+c的顶点B(4,t+6),且过A(0,6),
可设抛物线为y=a(x-4)2+t+6,
将A(0,6)代入得:6=16a+t+6,
解得:a=−
1 |
16 |
所以y=−
1 |
16 |
因为直线AB过A(0,6),可设其解析式为y=kx+6,
将B(4,t+6)代入得,t+6=4k+6,解得,k=
1 |
4 |
1 |
4 |
因而点P(m,
1 |
4 |
1 |
16 |
PC=d=
1 |
4 |
1 |
16 |
1 |
16 |
1 |
4 |
因为当m=2时,d=2,所以
1 |
16 |
1 |
4 |
因而所求抛物线为y=
1 |
2 |
看了 如图1,顶点为B(r,t+6...的网友还看了以下:
已知圆C:x^2+y^2=4,将其作伸缩变换X'=2Xy'=y得到曲线P,若点R(1,0),点Q是 2020-05-12 …
1,一次函数Y=kx+b,与x轴的交点坐标是什么?2.已知p=(E/R+r)^2*R,其中E与r是 2020-05-13 …
曲线上任一点的最大的内切圆的半径R的倒数P=1/R叫该曲线在该点的曲率,P越大说明曲曲线上任一点的 2020-06-12 …
动点r从点b出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点p,r同时出发,问点p运动多少秒 2020-06-27 …
已知P为椭圆上一点已知P为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1,F2为 2020-06-30 …
(本题满分14分)设有抛物线C:,通过原点O作C的切线,使切点P在第一象限.(1)求m的值,以及P 2020-07-21 …
(2011•河南模拟)已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C 2020-07-29 …
下列对应是从集合P到集合S的一个映射是A.P={有理数},S={数轴上的点},f:有理数→数轴上的 2020-07-30 …
求一道向量题设向量P和向量Q是点P和点Q在平面中的向量,通过PQ两点的向量方程为r=(1-t)p+t 2020-11-30 …
指针p,q和r依次指向某循环链表中三个相邻的结点,交换结点*q和结点*r在表中次序的程序段是()[A 2020-12-05 …