早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四棱锥E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)求二面角A-CD-E的余弦值.

题目详情
如图,四棱锥E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F为CE上的点,
且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)求二面角A-CD-E的余弦值.
▼优质解答
答案和解析
证明:(1)∵ABCD是矩形,
∴BC⊥AB,
∵平面EAB⊥平面ABCD,
平面EAB∩平面ABCD=AB,BC⊂平面ABCD,
∴BC⊥平面EAB,
∵EA⊂平面EAB,
∴BC⊥EA,
∵BF⊥平面ACE,EA⊂平面ACE,
∴BF⊥EA,
∵BC∩BF=B,BC⊂平面EBC,BF⊂平面EBC,
∴EA⊥平面EBC,
∵BE⊂平面EBC,
∴EA⊥BE.
(2)∵EA⊥BE,
∴AB=
AE2+BE2
=2
2

S△ADC=
1
2
×AD×DC=
1
2
×BC×AB=2
2

设O为AB的中点,连接EO,
∵AE=EB=2,
∴EO⊥AB,
∵平面EAB⊥平面ABCD,
∴EO⊥平面ABCD,即EO为三棱锥E-ADC的高,且EO=
1
2
AB=
2

∴VD-AEC=VE-ADC=
1
3
•S△ADC×EO=
4
3

(3)以O为原点,分别以OE、OB所在直线为x轴,y轴,建立空间直角坐标系,则E(
2
,0,0),C(0,
2
,2),A(0,-
作业帮用户 2017-11-14
问题解析
(1)由已知中ABCD是矩形,平面EAB⊥平面ABCD,根据面面垂直的性质可得BC⊥平面EAB,进而根据线面垂直的性质得到BC⊥EA,同理BF⊥EA,由线面垂直判定定理可得EA⊥平面EBC,再由线面垂直的性质即可得到AE⊥BE;
(2)设O为AB的中点,连接EO,可证得EO为三棱锥E-ADC的高,求出三棱锥的底面面积和高的长度,代入棱锥体积公式,即可求出答案.
(3)以O为原点,分别以OE、OB所在直线为x轴,y轴,建立空间直角坐标系,分别求出平面ACD和平面ECD的法向量,代入向量夹角公式,即可求出二面角A-CD-E的余弦值.
名师点评
本题考点:
二面角的平面角及求法;棱柱、棱锥、棱台的体积;平面与平面垂直的性质.
考点点评:
本题考查的知识点是二面角的平面及求示,棱锥的体积,平面与平面垂直的性质,熟练掌握空间线线垂直、线面垂直及面面垂直之间的相互转化及辩证关系是解答本题的关键.
我是二维码 扫描下载二维码
看了 如图,四棱锥E-ABCD中,...的网友还看了以下: