早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2A

题目详情

在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是(  )

A. a=2b

B. b=2a

C. A=2B

D. B=2A

▼优质解答
答案和解析
在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,
可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,
由正弦定理可得:2b=a.
故选:A.