早教吧作业答案频道 -->其他-->
几道高数题,1.求lim(n→∞)sin^2(∏√(n^2+n))2.设f(x)在[a,+∞)上连续,且lim(x→+∞)f(x)存在,证明f(x)在[a,+∞)上有界.3.设f(x)在[0,n](n为自然数,n≥2)上连续,f(0)=f(n),证明存在ξ,ξ+1∈[0,n],使f(ξ)=f(ξ+1)
题目详情
几道高数题,
1.求lim(n→∞)sin^2(∏√(n^2+n))
2.设f(x)在[a,+∞)上连续,且lim(x→+∞) f(x)存在,证明f(x)在[a,+∞)上有界.
3.设f(x)在[0,n](n为自然数,n≥2)上连续,f(0)=f(n),证明存在ξ,ξ+1∈[0,n],使f(ξ)=f(ξ+1).
1.求lim(n→∞)sin^2(∏√(n^2+n))
2.设f(x)在[a,+∞)上连续,且lim(x→+∞) f(x)存在,证明f(x)在[a,+∞)上有界.
3.设f(x)在[0,n](n为自然数,n≥2)上连续,f(0)=f(n),证明存在ξ,ξ+1∈[0,n],使f(ξ)=f(ξ+1).
▼优质解答
答案和解析
im(n→∞)sin^2(π√(n^2+n))
=1im(n→∞)[1-cos(2π√(n^2+n)) ]/2
=1im(n→∞)cos[2π(√(n^2+n)-n+n)]
=1im(n→∞)cos[2π(√(n^2+n)-n)]cos2nπ
=1im(n→∞)cos[2π(√(n^2+n)-n)]
=1im(n→∞)cos[2πn/(√(n^2+n)+n)]
=-1}
=1
2.证明,假设f(x)在[a,+∞)上无界.
则必有:
存在x>N,使得|f(x)|>=M,(任取M非常大)
而由题意得,lim(x→+∞) f(x)存在
即有x→+∞:f(x)=A+δ(假设极限为A,δ唯无穷小)
而由假设显然M>A.
所以假设不成立.
f(x)在[a,+∞)上有界.
3.令F(x)=f(x)-f(x+1)
则F(0)=f(0)-f(1)
F(1)=f(1)-f(2)
...
F(n-1)=f(n-1)-f(n)
则F(0)+...F(n-1)=f(0)-f(n)=0
可知F(0)+...F(n-1)=0
那么只有两种情况,
1,F(0),...F(n-1)均为0,则显然f(x)-f(x+1)恒为0.
所以存在ξ,ξ+1∈[0,n],使f(ξ)=f(ξ+1).
2,F(0),...F(n-1)有正有负,只有这样代数和才为零,
则显然存在有F(m1)>0,F(m1)
=1im(n→∞)[1-cos(2π√(n^2+n)) ]/2
=1im(n→∞)cos[2π(√(n^2+n)-n+n)]
=1im(n→∞)cos[2π(√(n^2+n)-n)]cos2nπ
=1im(n→∞)cos[2π(√(n^2+n)-n)]
=1im(n→∞)cos[2πn/(√(n^2+n)+n)]
=-1}
=1
2.证明,假设f(x)在[a,+∞)上无界.
则必有:
存在x>N,使得|f(x)|>=M,(任取M非常大)
而由题意得,lim(x→+∞) f(x)存在
即有x→+∞:f(x)=A+δ(假设极限为A,δ唯无穷小)
而由假设显然M>A.
所以假设不成立.
f(x)在[a,+∞)上有界.
3.令F(x)=f(x)-f(x+1)
则F(0)=f(0)-f(1)
F(1)=f(1)-f(2)
...
F(n-1)=f(n-1)-f(n)
则F(0)+...F(n-1)=f(0)-f(n)=0
可知F(0)+...F(n-1)=0
那么只有两种情况,
1,F(0),...F(n-1)均为0,则显然f(x)-f(x+1)恒为0.
所以存在ξ,ξ+1∈[0,n],使f(ξ)=f(ξ+1).
2,F(0),...F(n-1)有正有负,只有这样代数和才为零,
则显然存在有F(m1)>0,F(m1)
看了 几道高数题,1.求lim(n...的网友还看了以下:
1+X+X^2+.X^n=1/(1-x)的证明现在学高数的,幂级数~怎么证明~ 2020-04-12 …
怎样用乘积求导、复合函数求导公式证明商求导公式?已知乘积求导[u(x)v(x)]'=u(x)'v( 2020-06-03 …
一道同济出的《高等数学》书上的例题设f(x)在[0,正无穷)内连续且f(x)>0,证明函数F(x) 2020-06-10 …
同济高数五版上册33页例5证明里面“而x大于等于0,可用|x-x.|小于等于x.保证”,如何得到这 2020-06-10 …
一道高等代数证明题在闭区间[a,b]上的所有实连续函数构成的线性空间C(a,b)中,对于任两个函数 2020-06-10 …
高数多元函数问题D为xy平面上的区域,0≤x+y≤10,0≤x-y≤96,有二元函数f(x,y)= 2020-06-27 …
一道高数题设f(x)=x^n+x^(n-1)+……+x^2+x.求证(1)对任意n>1,方程fn( 2020-07-30 …
求解一道高数证明题设limf(x)=a(x→x.),limg(x)=b(x→x.)且恒有f(x)≥ 2020-07-30 …
一个高等数学的函数证明问题证明x^5+x-1=0只有一个正根题就是这样的,我看课后答案用的是零点定 2020-08-01 …
高一集合对于函数F(X)=X,则称为X为F(X)的不动点,若F(F(X))=X,则称X为F(X)的稳 2020-12-08 …