早教吧作业答案频道 -->数学-->
已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一
题目详情
已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
▼优质解答
答案和解析
(I) 函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.可得:x>0.
g(x)=f′(x)=2(x-1-lnx-a),∴g′(x)=2-
=
,
当0<x<1时,g′(x)<0,函数g(x)单调递减;
当1<x时,g′(x)>0,函数g(x)单调递增.
(II)证明:由f′(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx,
令u(x)=-2xlnx+x2-2(x-1-lnx)x+(x-1-lnx)2=(1+lnx)2-2xlnx,
则u(1)=1>0,u(e)=2(2-e)<0,
∴存在x0∈(1,e),使得u(x0)=0,
令a0=x0-1-lnx0=v(x0),其中v(x)=x-1-lnx(x≥1),
由v′(x)=1-
≥0,可得:函数v(x)在区间(1,+∞)上单调递增.
∴0=v(1)<a0=v(x0)<v(e)=e-2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.
再由(I)可知:f′(x)在区间(1,+∞)上单调递增,
当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;
当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;
又当x∈(0,1],f(x)=(x-a0)2-2xlnx>0.
故当x∈(0,+∞)时,f(x)≥0恒成立.
综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
g(x)=f′(x)=2(x-1-lnx-a),∴g′(x)=2-
2 |
x |
2(x-1) |
x |
当0<x<1时,g′(x)<0,函数g(x)单调递减;
当1<x时,g′(x)>0,函数g(x)单调递增.
(II)证明:由f′(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx,
令u(x)=-2xlnx+x2-2(x-1-lnx)x+(x-1-lnx)2=(1+lnx)2-2xlnx,
则u(1)=1>0,u(e)=2(2-e)<0,
∴存在x0∈(1,e),使得u(x0)=0,
令a0=x0-1-lnx0=v(x0),其中v(x)=x-1-lnx(x≥1),
由v′(x)=1-
1 |
x |
∴0=v(1)<a0=v(x0)<v(e)=e-2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.
再由(I)可知:f′(x)在区间(1,+∞)上单调递增,
当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;
当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;
又当x∈(0,1],f(x)=(x-a0)2-2xlnx>0.
故当x∈(0,+∞)时,f(x)≥0恒成立.
综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
看了 已知函数f(x)=-2xln...的网友还看了以下:
已知全集I=R,集合A={x| x²-3x+2≤0},B={x|x²-2ax+a≤0,a∈R}且B 2020-04-05 …
1.若关于X的方程ax²+2x+1至少有一个负根,a的范围是什么?2.已知a是实数,函数f(x)= 2020-06-20 …
已知函数f(x)=1/2ax2+2x,g(x)=Inx.是否存在正实数a,使得函数T(x)=g(x 2020-07-22 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
高一交集练习题求教已知集合A={y|y=x²-2ax+3b},B={y|y=-x²-2ax+7b} 2020-07-30 …
函数f(x)=ax^2+2x+1,g(x)=lnx.(1)设F(x)=f(x)-g(x),求F(x 2020-08-01 …
初高中衔接题1、已知关于x的方程:x²-ax+4=0,x²+(a-1)x+16=0,x²+2ax+ 2020-08-02 …
一.已知f(x)=2x的平方+bx+c,不等式f(x)小于0的解集是(0,5).f(x)的解析式? 2020-08-03 …
1.若集合X={x/x=2n+1,n∈Z},Y={y/y=4k±1,k∈z},试证明X=Y.2.已知 2020-10-31 …
已知函数f(x)=2ax-1/x^2+1,在(0,1]上是增函数,求a的范围Sorry啦~已知函数f 2021-01-22 …