早教吧作业答案频道 -->其他-->
高数………………设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0,试用柯西中值定理证明:f(x)/x^n=f^(n)(ax)/n!(0
题目详情
高数………………
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0,试用柯西中值定理证明:f(x)/x^n=f^(n)(ax)/n!(0
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0,试用柯西中值定理证明:f(x)/x^n=f^(n)(ax)/n!(0
▼优质解答
答案和解析
令g(x) = x^n,则 g^(k)(x) = A(n,k) x^(n-k),其中A(n,k) 为排列数,即A(n, k) = n! / (n-k)!.
则g(0)=g'(0)=……=g^(n-1)(0)=0, g^(n) = n!.
f(x)/x^n = f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)]
因为 g(b1 * x) <> 0,b1在(0,1)之间,因此柯西中值定理可得
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x),a1在(0,1)之间
反复用n次柯西定理可得
[f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x) =...=f^(n)(an * x) / g^(n)(an * x),an 在(0, 1)之间
因为g^(n) (x) = n!
所以
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f^(n)(an * x) / g^(n)(an * x) = f^(n) (an * x) / n!
原题得证
则g(0)=g'(0)=……=g^(n-1)(0)=0, g^(n) = n!.
f(x)/x^n = f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)]
因为 g(b1 * x) <> 0,b1在(0,1)之间,因此柯西中值定理可得
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x),a1在(0,1)之间
反复用n次柯西定理可得
[f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x) =...=f^(n)(an * x) / g^(n)(an * x),an 在(0, 1)之间
因为g^(n) (x) = n!
所以
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f^(n)(an * x) / g^(n)(an * x) = f^(n) (an * x) / n!
原题得证
看了 高数………………设函数y=f...的网友还看了以下:
随原子序数递增,八种短周期元素(用字母x等表示)原子半径的相对大小、最高正价或最低负价的变化如下图 2020-04-08 …
一道有关微积分中值定理的题目已知函数f(x)在区间【0,1】上连续,在(0,1)内可导,且f(0) 2020-05-16 …
1/u+1/v=1/f在一倍焦距内成立吗 2020-05-22 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
定义在R上的偶函数f(x)在(﹣∞,0]上单调递增,若f(a+1)<f(2a-1),求a的取值范围 2020-07-08 …
证明数列发散的方法?我总结了两种1定义法2柯西存在子数列不发散有其他的么?希望证明数列发散的方法? 2020-07-31 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …