早教吧 育儿知识 作业答案 考试题库 百科 知识分享

广义积分求解,设f(x)在[1,+∞)上可积,∫f(x)dx(上限+∞下限为1)收敛,且f(x)=4/(x^4)-2/(x^3)*∫f(x)dx(上限+∞,下限为1).求(1)∫f(x)dx(上限+∞,下限为1).(2)f(x)

题目详情
广义积分求解,
设f(x)在[1,+∞)上可积,∫f(x)dx(上限+∞下限为1)收敛,且f(x)=4/(x^4)-2/(x^3)*∫f(x)dx(上限+∞,下限为1).求(1)∫f(x)dx(上限+∞,下限为1).(2)f(x)
▼优质解答
答案和解析
设积分(1到无穷)f(x)dx=a,则f(x)=4/x^4--2a/x^3,在[1,+无穷)上积分得
a=积分(1到无穷)f(x)dx=积分(1到无穷)(4/x^4--2a/x^3)dx=--4/(3x^3)+a/(x^2)|上限无穷下限1
=4/3--a,因此a=2/3.
f(x)=4/x^4-4/(3x^3).