早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道初中证明题证明1/1×2×3+1/2×3×4+...+1/n(n+1)(n+2)=n(n+3)/4(n+1)(n+2)

题目详情
一道初中证明题
证明1/1×2×3+1/2×3×4+...+1/n(n+1)(n+2)=n(n+3)/4(n+1)(n+2)
▼优质解答
答案和解析
1/n(n+1)(n+2)=(1/n(n+1)-1/(n+1)(n+2))*1/2
所以,
1/1*2*3 +1/2*3*4+...+1/N(N+1)(N+2)
=[(1/1*2-1/2*3)+(1/2*3-1/3*4)+...+(1/n(n+1)-1/(n+1)(n+2)]*1/2
=(1/2-1/(n+1)(n+2))*1/2
=[(n+1)(n+2)-2]/4(n+1)(n+2)
=n(n+3)/4(n+1)(n+2)