早教吧作业答案频道 -->数学-->
求一元二次方程根与系数的关系与判别式定理的难题集锦解法.(卷子内容问题补充)1、是否存在实数m,使方程x²+3x+2m-1=0满足.1.有一个根为零m=2.两根互为倒数m=3.有两个负根m=2、已知关
题目详情
求一元二次方程根与系数的关系与判别式定理的难题集锦解法.(卷子内容问题补充)
1、是否存在实数m,使方程x²+3x+2m-1=0 满足.1.有一个根为零m= 2.两根互为倒数m= 3.有两个负根m=
2、已知关于x的二次方程(m-1)x²-(2m+1)x+12-3m=0,是否存在实数m,使1、方程有两个不相等的实数根m= 2、方程有两个正实数根m= 3、方程有两个异号的实数根m=
(还有两个一会补充)
3、已知某二次项系数为1的一元二次方程的两个实数根为p,q且满足关系式①p+q(p+1)=5 ②p²q+pq²=6 试求这个一元二次方程。
4、已知关于x的方程x²+2(m-2)x+m²=0有两个实数根且两根的平方和比两根的积大33求m的值。
1、是否存在实数m,使方程x²+3x+2m-1=0 满足.1.有一个根为零m= 2.两根互为倒数m= 3.有两个负根m=
2、已知关于x的二次方程(m-1)x²-(2m+1)x+12-3m=0,是否存在实数m,使1、方程有两个不相等的实数根m= 2、方程有两个正实数根m= 3、方程有两个异号的实数根m=
(还有两个一会补充)
3、已知某二次项系数为1的一元二次方程的两个实数根为p,q且满足关系式①p+q(p+1)=5 ②p²q+pq²=6 试求这个一元二次方程。
4、已知关于x的方程x²+2(m-2)x+m²=0有两个实数根且两根的平方和比两根的积大33求m的值。
▼优质解答
答案和解析
(1)
当m=1时,原方程为一次方程:-3x+9=0,1、2、3小问都不满足
当m≠1时,
① 有一个根为0,代入方程:0+2m-1=0
解得 m=1/2
② 设两根为x1,x2.两根互为倒数,则x1x2=1
又x1x2=c/a=2m-1(韦达定理),所以2m-1=1
解得 m=1
③ 有两个负根,那么△≥0(=0时,可能为两个相等的负根,即重根)且x1x2>0且 x1+x2 13-8m≥0 => m≤-13/8
2m-1>0 => m>1/2
x1+x2=-b/a=-3 恒小于0
解得-13/8≤m0
(2m+1)²-4(m-1)(12-3m)>0
16m²-56m+49>0
(4m-7)²>0
存在这样的实数m,m≠7/4且m≠1
②若方程有两个正实数根,则△≥0且x1x2>0且x1+x2>0
(4m-7)²≥0 => m∈R
(12-3m)/(m-1)>0 => (12-3m)*(m-1)>0且m≠1 => 1/4 (2m+1)*(m-1)>0 且m≠1 => m1
由三个不等式解得:无解
不存在这样的m
③若方程有两个异号的实数根,则△>0且x1x20 => m≠7/4
(12-3m)/(m-1)>0 => (12-3m)*(m-1) m1
由以上两个不等式解得:m1且 m≠7/4 ( (-∞,1/4)∪(1,7/4)∪(7/4,+∞) )
存在这样的m,m1且 m≠7/4
(3)
设方程为:x²+bx+c=0
则,p+q=-b,pq=c => b=-(p+q),c=pq
p+q(p+1)=5 => p+q+pq=5
p²q+pq²=6 => pq(p+q)=6
解得p+q=2,pq=3或者p+q=3,pq=2
方程为:x²-2x+3=0 或 x²-3x+2=0
(4)已知关于x的方程x²+2(m-2)x+m²=0有两个实数根且两根的平方和比两根的积大33求m的值.
由题:△≥0且x1²+x2²=x1x2+33,因为x1²+x2²=(x1+x2)² - 2x1x2=[-2(m-2)]² - 2m²=2m²-16m+16 ,所以
4(m-2)²-4m²≥0 => 16-16m≥0 => m≤1
2m²-16m+16 =m²+33 => m²-16m-17=0 => (m-17)(m+1)=0
解得m=-1或m=17,因为m≤1,17舍去
所以m=-1
(累~.)
当m=1时,原方程为一次方程:-3x+9=0,1、2、3小问都不满足
当m≠1时,
① 有一个根为0,代入方程:0+2m-1=0
解得 m=1/2
② 设两根为x1,x2.两根互为倒数,则x1x2=1
又x1x2=c/a=2m-1(韦达定理),所以2m-1=1
解得 m=1
③ 有两个负根,那么△≥0(=0时,可能为两个相等的负根,即重根)且x1x2>0且 x1+x2 13-8m≥0 => m≤-13/8
2m-1>0 => m>1/2
x1+x2=-b/a=-3 恒小于0
解得-13/8≤m0
(2m+1)²-4(m-1)(12-3m)>0
16m²-56m+49>0
(4m-7)²>0
存在这样的实数m,m≠7/4且m≠1
②若方程有两个正实数根,则△≥0且x1x2>0且x1+x2>0
(4m-7)²≥0 => m∈R
(12-3m)/(m-1)>0 => (12-3m)*(m-1)>0且m≠1 => 1/4 (2m+1)*(m-1)>0 且m≠1 => m1
由三个不等式解得:无解
不存在这样的m
③若方程有两个异号的实数根,则△>0且x1x20 => m≠7/4
(12-3m)/(m-1)>0 => (12-3m)*(m-1) m1
由以上两个不等式解得:m1且 m≠7/4 ( (-∞,1/4)∪(1,7/4)∪(7/4,+∞) )
存在这样的m,m1且 m≠7/4
(3)
设方程为:x²+bx+c=0
则,p+q=-b,pq=c => b=-(p+q),c=pq
p+q(p+1)=5 => p+q+pq=5
p²q+pq²=6 => pq(p+q)=6
解得p+q=2,pq=3或者p+q=3,pq=2
方程为:x²-2x+3=0 或 x²-3x+2=0
(4)已知关于x的方程x²+2(m-2)x+m²=0有两个实数根且两根的平方和比两根的积大33求m的值.
由题:△≥0且x1²+x2²=x1x2+33,因为x1²+x2²=(x1+x2)² - 2x1x2=[-2(m-2)]² - 2m²=2m²-16m+16 ,所以
4(m-2)²-4m²≥0 => 16-16m≥0 => m≤1
2m²-16m+16 =m²+33 => m²-16m-17=0 => (m-17)(m+1)=0
解得m=-1或m=17,因为m≤1,17舍去
所以m=-1
(累~.)
看了 求一元二次方程根与系数的关系...的网友还看了以下:
已知当x=a时,代数式3(3x+1)(x-1)-(3x-2)^2的值是-7,又当y=b时,代数式. 2020-04-26 …
几道方程数学题1、如果x=-2是关于x的方程4x-2a=3的解,那么a=2、由3x=2x+1变为3 2020-05-16 …
若关于x的不等式ax2+3x-1>0的解集是{x|12<x<1},(1)求a的值;(2)求不等式a 2020-07-07 …
设f(x)为一多项式若f(x+1)f(x)除以x^2+x+1之馀式为3x+1求f(x)除以x^2+ 2020-07-27 …
几道不等式题(六年级)1.关于x的不等式4/3x+1/3a>1的解都是不等式-2/3x-1/3<0 2020-07-29 …
已知多项式3x^3+ax^2+bx+1能被x^2+1且商式是3x+1,求(-a)^b的值急,还有一 2020-07-30 …
5道数学题,敢进来就敢答,应该挺简单...1、若(-7m+A)(4n+B)=16n-49m,则A= 2020-07-30 …
几道数学题.13、已知m的平方+m-1=0,求m的立方+2m的平方-1997带的值.14、已知多项 2020-07-30 …
阅读理(请仔细阅读,认真思考,灵活应用)例已知实数x满足x+1x=4,求分式xx2+3x+1的值. 2020-07-30 …
提取公因式小华认为在多项式2x²+3x+1中一定有因式(x+1),他是这样想的:2x²+3x+1= 2020-08-01 …