早教吧作业答案频道 -->数学-->
若函数f(x)=x+2x,x≤0ax-lnx,x>0,在其定义域上恰有两个零点,则正实数a的值为.
题目详情
若函数f(x)=
,在其定义域上恰有两个零点,则正实数a的值为___.
|
|
▼优质解答
答案和解析
当x≤0时,f(x)=x+2x,单调递增,
f(-1)=-1+2-1<0,f(0)=1>0,
由零点存在定理,可得f(x)在(-1,0)有且只有一个零点;
则由题意可得x>0时,f(x)=ax-lnx有且只有一个零点,
即有a=
有且只有一个实根.
令g(x)=
,g′(x)=
,
当x>e时,g′(x)<0,g(x)递减;
当0<x<e时,g′(x)>0,g(x)递增.
即有x=e处取得极大值,也为最大值,且为
,
如图g(x)的图象,当直线y=a(a>0)与g(x)的图象
只有一个交点时,则a=
.
故答案为:
.
f(-1)=-1+2-1<0,f(0)=1>0,
由零点存在定理,可得f(x)在(-1,0)有且只有一个零点;
则由题意可得x>0时,f(x)=ax-lnx有且只有一个零点,
即有a=
lnx |
x |
令g(x)=
lnx |
x |
1-lnx |
x2 |
当x>e时,g′(x)<0,g(x)递减;
当0<x<e时,g′(x)>0,g(x)递增.
即有x=e处取得极大值,也为最大值,且为
1 |
e |
如图g(x)的图象,当直线y=a(a>0)与g(x)的图象
只有一个交点时,则a=
1 |
e |
故答案为:
1 |
e |
看了 若函数f(x)=x+2x,x...的网友还看了以下:
若函数f(x)=x/(2x+1)(x-a)奇函数,求a=?其实我不想知道答案,我只想知道x可不可以 2020-06-03 …
已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时 2020-07-09 …
幂函数为形如y=x^a的函数,其系数为1,幂函数模型为f(x)=a*x^n+b(a,b为常数),二 2020-08-01 …
已知函数f(x)=x+2,x>ax2+5x+2,x≤a,函数g(x)=f(x)-2x恰有三个不同的零 2020-10-31 …
已知函数f(x)=x,x≥ax3-3x,x<a若函数g(x)=2f(x)-ax恰有2个不同的零点,则 2020-11-10 …
(1)函数f(x+a)与函数f(a-x)的图像关于对称,(2)函数f(x-a)与函数f(a-x)的图 2020-11-18 …
(文科)已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x 2020-11-21 …
数学问题1已知函数y=x^2-6x+8,1≤x≤a,且函数y的最小值为m,求m和实数a的取值范围.2 2020-12-08 …
1、已知函数y=x2-x+2(-1<x<5),求函数值y的取值范围.2、已知函数y=x2-6x+8, 2020-12-08 …
(2014•静安区一模)(理)已知函数f(x)是定义在实数集R上的以2为周期的偶函数,当0≤x≤1时 2020-12-16 …