早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(n)=1+12+13+L+1n(n∈N*),用数学归纳法证明f(2n)>n2时,f(2k+1)-f(2k)等于12k+1+12k+2+…+12k+112k+1+12k+2+…+12k+1.

题目详情
已知f(n)=1+
1
2
+
1
3
+L+
1
n
(n∈N*),用数学归纳法证明f(2n)>
n
2
时,f(2k+1)-f(2k)等于
1
2k+1
+
1
2k+2
+…+
1
2k+1
1
2k+1
+
1
2k+2
+…+
1
2k+1
▼优质解答
答案和解析
因为假设n=k时,f(2k)=1+
1
2
+
1
3
+…+
1
2k

当n=k+1时,f(2k+1)=1+
1
2
+
1
3
+…+
1
2k
+
1
2k+1
+…+
1
2k+1

∴f(2k+1)-f(2k)=
1
2k+1
+
1
2k+2
+…+
1
2k+1

故答案为:
1
2k+1
+
1
2k+2
+…+
1
2k+1