早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,抛物线y=-12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD

题目详情
如图,抛物线y=-
1
2
x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).
作业帮
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由.
▼优质解答
答案和解析
(1)∵抛物线y=-
1
2
x2+mx+n经过A(-1,0),C(0,2).作业帮
解得:
m=
3
2
n=2

∴抛物线的解析式为:y=-
1
2
x2+
3
2
x+2;

(2)∵y=-
1
2
x2+
3
2
x+2,
∴y=-
1
2
(x-
3
2
2+
25
8

∴抛物线的对称轴是直线x=
3
2

∴OD=
3
2

∵C(0,2),
∴OC=2.
在Rt△OCD中,由勾股定理,得
CD=
5
2

∵△CDP是以CD为腰的等腰三角形,
∴CP1=DP2=DP3
作CH⊥x轴于H,
∴HP1=HD=2,
∴DP1=4.
∴P1
3
2
,4),P2
3
2
5
2
),P3
3
2
,-
5
2
).