早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知⊙O为△ABC的外接圆,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,P为BC的中点.动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为ts.(1

题目详情
如图,已知⊙O为△ABC的外接圆,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,P为BC的中点.动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)试说明圆心O的位置.
(2)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(3)若⊙P与⊙O相切,求t的值.
▼优质解答
答案和解析
(1)如图1,∵Rt△ABC中,∠ACB=90°,AB是△ABC外接圆直径,
∴圆心O的位置为线段AB的中点.

(2)直线AB与⊙P相切.
如图2,过点P作PD⊥AB,垂足为D.
在Rt△ABC中,∠ACB=90°
∵AC=6cm,BC=8cm 
∴AB=
AC2+BC2
=10(cm),
∵P为BC的中点
∴PB=4cm.
∵∠PDB=∠ACB=90°,∠PBD=∠ABC
∴△PBD∽△ABC.
PD
AC
PB
AB
,即
PD
6
4
10

∴PD=2.4(cm).
当t=1.2时,PQ=2t=2.4(cm)
∴PD=PQ,即圆心P到直线AB的距离等于⊙P的半径.
∴直线AB与⊙P相切.

(3)∵∠ACB=90°,
∴AB为△ABC的外切圆的直径.
∴OB=
1
2
AB=5(cm).
如图3,连接OP,
∵P为BC的中点,O为BA的中点,
∴OP=
1
2
AC=3(cm).
∵点P在⊙O内部,
∴⊙P与⊙O只能内切.
∴5-2t=3或2t-5=3,
∴t=1或4.
∴⊙P与⊙O相切时,t的值为1或4.