早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)-g(x).(1)若a=2,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;(2)若x≥0

题目详情
设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)-g(x).
(1)若a=2,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;
(2)若x≥0时,函数y=F(x)的图象恒在y=F(-x)的图象上方,求实数a的取值范围.
▼优质解答
答案和解析
(1)因为a=2,所以|PQ|=et+sint-2t.令h(x)=ex+sinx-2x,
即h'(x)=ex+cosx-2,因为h''(x)=ex-sinx,
当x>0时,ex>1,-1≤sinx≤1,所以h''(x)=ex-sinx>0,
所以h'(x)=ex+cosx-2在(0,+∞)上递增,所以h'(x)=ex+cosx-2>h'(0)=0,
∴x∈[0,+∞)时,h(x)的最小值为h(0)=1,所以|PQ|min=1.
(2)令ϕ(x)=F(x)-F(-x)=ex-e-x+2sinx-2ax,
则ϕ'(x)=ex-e-x+2cosx-2a,S(x)=ϕ''(x)=ex-e-x-2sinx,
因为S'(x)=ex+e-x-2cosx≥0当x≥0时恒成立,所以函数S(x)在[0,+∞)上单调递增,
∴S(x)≥S(0)=0当x∈[0,+∞)时恒成立;
故函数ϕ'(x)在[0,+∞)上单调递增,所以ϕ'(x)≥ϕ'(0)=4-2a在x∈[0,+∞)时恒成立.
当a≤2时,ϕ'(x)≥0,ϕ(x)在[0,+∞)单调递增,即ϕ(x)≥ϕ(0)=0.
故a≤2时F(x)≥F(-x)恒成立.
当a>2时,因为ϕ'(x)在[0,+∞)单调递增,
所以总存在x0∈(0,+∞),使ϕ(x)在区间[0,x0)上ϕ'(x)<0,即ϕ(x)在区间[0,x0)上单调递减,而ϕ(0)=0,
所以当x∈[0,x0)时,ϕ(x)<0,这与F(x)-F(-x)≥0对x∈[0,+∞)恒成立矛盾,
所以a>2不符合题意,故符合条件的a的取值范围是(-∞,2].