早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,则实数a的取值范围是.

题目详情
已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,则实数a的取值范围是___.
▼优质解答
答案和解析
由x+y2ey-a=0成立,得y2ey=a-x,
∴对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,
∴a-1≥(-1)2e-1,且a-0≤12×e1
解得1+
1
e
≤a≤e,
其中a=1+
1
e
时,y存在两个不同的实数,因此舍去,
a的取值范围是(1+
1
e
,e].
故答案为:(1+
1
e
,e].
看了 已知e为自然对数的底数,若对...的网友还看了以下: