早教吧作业答案频道 -->数学-->
已知函数f(x)=ex+ax-1(e为自然对数的底数).(Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求实数a的取值范围.
题目详情
已知函数f(x)=ex+ax-1(e为自然对数的底数).
(Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;
(Ⅱ)若f(x)≥x2在(0,1 )上恒成立,求实数a的取值范围.
(Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;
(Ⅱ)若f(x)≥x2在(0,1 )上恒成立,求实数a的取值范围.
▼优质解答
答案和解析
(I)当a=1时,f(x)=ex+x-1,f(1)=e,f'(x)=ex+1,f'(1)=e+1,
函数f(x)在点(1,f(1))处的切线方程为y-e=(e+1)(x-1),即y=(e+1)x-1,
设切线与x轴、y轴的交点分别为A、B,
∴A(
,0),B(0,-1),
∴S△OAB=
×
×1=
,
∴过点(1,f(1))处的切线与坐标轴围成的三角形的面积为
.
(II)由f(x)≥x2得a≥
,
令h(x)=
=
+x−
,h′(x)=1−
−
=
,
令k(x)=x+1-ex…(6分)k'(x)=1-ex,
∵x∈(0,1),∴k'(x)<0,
∴k(x)在(0,1)上是减函数,∴k(x)<k(0)=0.
因为x-1<0,x2>0,所以h′(x)=
>0,
∴h(x)在(0,1)上是增函数.
所以h(x)<h(1)=2-e,所以a≥2-e…(12分)
函数f(x)在点(1,f(1))处的切线方程为y-e=(e+1)(x-1),即y=(e+1)x-1,
设切线与x轴、y轴的交点分别为A、B,
∴A(
1 |
e+1 |
∴S△OAB=
1 |
2 |
1 |
e+1 |
1 |
2(e+1) |
∴过点(1,f(1))处的切线与坐标轴围成的三角形的面积为
1 |
2(e+1) |
(II)由f(x)≥x2得a≥
1+x2−ex |
x |
令h(x)=
1+x2−ex |
x |
1 |
x |
ex |
x |
1 |
x2 |
ex(x−1) |
x2 |
(x−1)(x+1−ex) |
x2 |
令k(x)=x+1-ex…(6分)k'(x)=1-ex,
∵x∈(0,1),∴k'(x)<0,
∴k(x)在(0,1)上是减函数,∴k(x)<k(0)=0.
因为x-1<0,x2>0,所以h′(x)=
(x−1)(x+1−ex) |
x2 |
∴h(x)在(0,1)上是增函数.
所以h(x)<h(1)=2-e,所以a≥2-e…(12分)
看了 已知函数f(x)=ex+ax...的网友还看了以下:
下列命题正确的个数是()①若直线a//b,b包含于α,则a//α②若直线a//α,b包含于α,则a 2020-07-09 …
已知直线a,b,c,d,给出以下四个命题:①若a∥b,a⊥c,则b⊥c;②若a⊥c,b⊥c,则a∥ 2020-07-14 …
有下列四个命题:①若直线a垂直于直线b在平面α内的射影,则a⊥b;②若OM∥O1M1且ON∥O1N 2020-07-16 …
定义映射:f:A(x,y)→B(x+根号3y,根号3-y),是否存在这样的直线l:若点A在直线l上 2020-07-30 …
过两条异面直线外一点有且只有一个平面与这两条异面直线平行若直线a与平面α内的一条直线平行,则a与平 2020-08-02 …
下面四个命题,正确的是()A.己知直线a,b⊂平面α,直线c⊂平面β,若c⊥a,c⊥b,则平面α⊥平 2020-11-02 …
已知直线a和两个平面α,β,给出下列四个命题:①若a∥α,则α内的任何直线都与a平行;②若a⊥α,则 2020-11-02 …
1.下面说法正确的是A.若直线a平行于平面a(阿尔法)内的无数条直线,则a平行于a(阿尔法)B.若直 2020-11-06 …
已知,直线l:3x+2y-1=0.①若直线a与直线l垂直且过点(1/2,-1),熟直线a的方程.已知 2021-01-11 …
如图,直线a与弧线b相交于M点,据图完成2~3题.据图分析下列说法正确的是()A.若a为赤道,b为晨 2021-01-17 …