早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(理科)已知函数f(x)=(1+x)2-2ln(1+x).(1)若存在x0∈[0,1]使不等式f(x0)-m≤0能成立,求实数m的最小值;(2)若关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取

题目详情
(理科)已知函数f(x)=(1+x)2-2ln(1+x).
(1)若存在x0∈[0,1]使不等式f(x0)-m≤0能成立,求实数m的最小值;
(2)若关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取值范围.
▼优质解答
答案和解析
(1)要存在x0∈[0,1]使得不等式f(x0)-m≤0能成立,只需x∈[0,1]时,m≥f(x)min
求导得f′(x)=2(1+x)-
2
1+x
,定义域为(-1,+∞),
∵当x∈(-1,0)时,f′(x)<0,∴函数f(x)在区间(-1,0)上是减函数;
当x∈(0,+∞)时,f′(x)>0,∴函数f(x)在区间(0,+∞)上是增函数.
∴f(x)min=f(0)=1,∴m≥1.故实数m的最小值为1.
(2)关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,即方程1+x-2ln(1+x)=a在区间[0,2]上恰有两个相异实根.
设h(x)=(1+x)-2ln(1+x),则h′(x)=
x−1
x+1

由h′(x)>0,得x>1或x<-1(舍去);由h′(x)<0,得-1<x<1.
∴h(x)在[0,1]上递减,在[1,2]上递增.
∵h(  )>h(2),且h(x)在[0,2]上连续
∴方程1+x-2ln(1+x)=a在区间[0,2]上恰有两个相异实根时,h(1)<a≤h(2)
∴2-2ln2<a≤3-2ln3,
∴实数a的取值范围是(2-2ln2,3-2ln3).