早教吧作业答案频道 -->数学-->
(2011•无锡一模)如图①,将一个内角为120°的菱形纸片沿较长对角线剪开,得到图②的两张全等的三角形纸片,将这两张三角形纸片摆放成图③的形式,点B、F、C、D在同一条直线上,AB分
题目详情
(2011•无锡一模)如图①,将一个内角为120°的菱形纸片沿较长对角线剪开,得到图②的两张全等的三角形纸片,将这两张三角形纸片摆放成图③的形式,点B、F、C、D在同一条直线上,AB分别交DE、EF于点P、M,AC交DE于点N.
(1)找出图③中的一对全等三角形(△ABC与△DEF全等除外),并加以证明;
(2)当P为AB的中点时,求△APN与△DCN的面积比.
(1)找出图③中的一对全等三角形(△ABC与△DEF全等除外),并加以证明;
(2)当P为AB的中点时,求△APN与△DCN的面积比.
▼优质解答
答案和解析
(1)我们可以利用菱形的性质及全等三角形的判定方法AAS判定△APN≌△EPM.
(2)要求△APN与△DCN的面积比,我们可以根据菱形的性质及已知,得到PN:CN=,根据相似三角形的判定,得到△ANP∽△DNC,即△APN与△DCN的面积比为3:1.
【解析】
(1)答案不唯一,如:△APN≌△EPM.
证明:由菱形性质得∠A=∠B=∠D=∠E,
∴PB=PD.
∵AB=DE,
∴PA=PE.
∵∠EPM=∠APN,
∴△APN≌△EPM.(3分)
(2)连接CP.
∵CA=CB,P为AB中点,
∴CP⊥AB.
∵∠ACB=∠DFE=120°,AC=BC=DF=FE,
∴∠D=∠A=∠B=30°.
∴∠APN=60°.
∴∠CNP=90°,∠CPN=30°.
∴PN:CN=:1.
∵∠D=∠A,∠ANP=∠DNC,
∴△ANP∽△DNC.
∴S△ANP:S△DNC=PN2:CN2=3:1.
即△APN与△DCN的面积比为3:1.(7分)
(2)要求△APN与△DCN的面积比,我们可以根据菱形的性质及已知,得到PN:CN=,根据相似三角形的判定,得到△ANP∽△DNC,即△APN与△DCN的面积比为3:1.
【解析】
(1)答案不唯一,如:△APN≌△EPM.
证明:由菱形性质得∠A=∠B=∠D=∠E,
∴PB=PD.
∵AB=DE,
∴PA=PE.
∵∠EPM=∠APN,
∴△APN≌△EPM.(3分)
(2)连接CP.
∵CA=CB,P为AB中点,
∴CP⊥AB.
∵∠ACB=∠DFE=120°,AC=BC=DF=FE,
∴∠D=∠A=∠B=30°.
∴∠APN=60°.
∴∠CNP=90°,∠CPN=30°.
∴PN:CN=:1.
∵∠D=∠A,∠ANP=∠DNC,
∴△ANP∽△DNC.
∴S△ANP:S△DNC=PN2:CN2=3:1.
即△APN与△DCN的面积比为3:1.(7分)
看了 (2011•无锡一模)如图①...的网友还看了以下:
把一个矩形纸片对折,使顶点B和D重合,折痕为把一个矩形纸片对折使顶点B和D重合折痕为EF(1)梯形A 2020-03-30 …
如图,先把一矩形ABCD纸片对折,设折痕为MN,再把点B叠在折痕线上,得到△ABE.过点B折纸片, 2020-05-16 …
如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1. 2020-05-20 …
流线形坝对水流()、迎溜顺、托溜稳、导溜能力强、回溜弱。A.干扰小B.干扰大C.抵抗大D.阻流大 2020-05-27 …
流线形坝对水流干扰小、放样和施工最简单。 2020-05-27 …
1.如果矩形的一条对角线长为8cm,两条对角线的一个交角为120度,求矩形的边长(精确到0.01c 2020-06-06 …
如图,在一张矩形纸片的一端,将折出的一个正方形展平后,又折成了两个相等的矩形,再把纸片展平,折出小 2020-06-24 …
光学知识:透镜对光线有什么作用?1/2玻片对光线有什么作用?偏振片对光线又有什么作用?例如说偏振片可 2020-11-04 …
如图,将一个长为16CM,宽为12CM的矩形纸片对折两次后沿所得矩形两邻边中点的连线剪下,再打开,若 2020-12-01 …
(2012•武汉模拟)如图所示的正方形纸片,先沿虚线向右对折,接着沿虚线向上对折,将对折后的纸片沿虚 2020-12-25 …