早教吧作业答案频道 -->数学-->
如何证明一元函数可导则必连续
题目详情
如何证明一元函数可导则必连续
▼优质解答
答案和解析
不妨设一元函数为y=f(x),因为该函数可导,令其在X1处的导数为f'(X1),由导数的定义可知(f(X)-f(X1))/(X-X1)在X—>X1时极限为f'(X1),所以f(X)-f(X1)在X—>X1时的极限为f'(X1)×(X-X1)=0,由极限的运算可知f(X)在X—>X1时极限为f(X1),根据一元函数点连续的定义可知f(X)在X1处连续,由于X1可变,这样可证一元函数y=f(x)在给定区间上也连续,命题即证.
看了 如何证明一元函数可导则必连续...的网友还看了以下:
高数可导的问题当函数在一个区间可导,可以推出函数在区间连续,那当一个函数在点x1存在导数,那么是否 2020-04-25 …
请说明连续,可偏导和可微的关系 2020-05-13 …
f(x)=(x-a)g(x),lim(x->a)g(x)=0,且g(a)=2,则f(a)的导数为0 2020-05-14 …
已知函数y=ln(x-5),在x=5处,函数()A.连续可导B.连续不可导C已知函数y=ln(x- 2020-05-14 …
如何证明导数连续可导?证明连续的方法类型,可导的类型方法? 2020-06-03 …
可导和连续的关系我记得,可导是从连续推导而出的,连续了不一定可导,但是可导必然连续怎么现在从可导证 2020-07-16 …
中值定理明明已经可导了为什么还要连续可导已经说明了连续啊,说了要可导就不用说连续吗,不是多此一举吗 2020-07-16 …
f(x)在x=0邻域二阶可导,可以说明f(x)的一阶导数在x=0处连续吗.这f(x)在x=0邻域二 2020-07-31 …
两道证明可导连续可微题,1证明f(x,y)=根号下(x²+y²),在(0.0)连续但不可导证明f(x 2020-11-03 …
分段函数在分段点左导数可能等于右导数这说明该点可导但该点却不一定连续这不是和一元函数定理可导必连续或 2021-02-11 …
相关搜索:如何证明一元函数可导则必连续