早教吧作业答案频道 -->数学-->
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0,f(0.5)=1.试证(1)c属于(0.5,1),f(c)=c;(2)对任意实数m,必存在t属于(0,c),使得f'(t)-m[f(t)-t]=1.
题目详情
一道简单的高数题.
设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0,f(0.5)=1.试证(1)c属于(0.5,1),f(c)=c;(2)对任意实数m,必存在t属于(0,c),使得f'(t)-m[f(t)-t]=1.
设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0,f(0.5)=1.试证(1)c属于(0.5,1),f(c)=c;(2)对任意实数m,必存在t属于(0,c),使得f'(t)-m[f(t)-t]=1.
▼优质解答
答案和解析
令G(x)=f(x)-x.
第一问:G(1)=f(1)-10,根据零点定理,则在(0.5,1)内必有一点c满足G(c)=f(c)-c=0,故f(c)=c.
第二问:要证f'(t)-m[f(t)-t]=1,即证有一点t满足G(x)-mG(x)=0,利用辅助函数方法,设F(x)=exp(-mx)G(x),因为F(c)=F(0)=0,所以存在一点t在(0,c)使得F'(t)=-mexp(-mx)G(t)+exp(-mt)G’(t)=0,即得G'(t)=mG(t),问题得证
第一问:G(1)=f(1)-10,根据零点定理,则在(0.5,1)内必有一点c满足G(c)=f(c)-c=0,故f(c)=c.
第二问:要证f'(t)-m[f(t)-t]=1,即证有一点t满足G(x)-mG(x)=0,利用辅助函数方法,设F(x)=exp(-mx)G(x),因为F(c)=F(0)=0,所以存在一点t在(0,c)使得F'(t)=-mexp(-mx)G(t)+exp(-mt)G’(t)=0,即得G'(t)=mG(t),问题得证
看了 一道简单的高数题.设函数f(...的网友还看了以下:
设函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7 2020-05-13 …
(2005•广东)设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f 2020-06-08 …
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0) 2020-06-18 …
设函数f(x)在区间0,1上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1, 2020-06-22 …
1、设f(x)是定义在R+上的增函数,并且对任意的x>0,y>0,f(xy)=f(x)+f(y)总 2020-08-01 …
函数f(0)+f(1)+f(2)=3f(3)=1证明f'(x)=0设函数f(x)在[0,3]上连续 2020-08-02 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
设f'(x)在[0,1]上连续,试求∫[1+xf'(x)]e^f'(x)dx(范围是0到1)抱歉,输 2020-10-31 …
利用Roll定理构造函数设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1 2020-11-02 …
关于函数……已知函数y=f(x)的定义域为R,对任意x,∈R,均有f(x+x~)=f(x)+f(x~ 2020-12-31 …